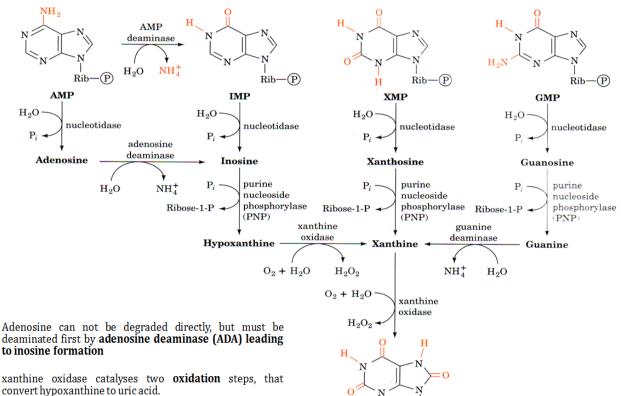


Nucleotides are:

- Purines (A & G).
- Pyrimidines (T & C).


And they are composed of:

- Nitrogenous base.
- Pentose monosaccharide
- One, two or three phosphate groups.

- Purine synthesis:

De Novo pathway	Salvage pathway
 * Using amino acids as nitrogen and carbon donors. * Expensive pathway (6ATP/1IMP). * IMP synthesized from PRPP is the precursor of both AMP & GMP. * AMP & GMP converted to ATP and GTP by mono & diphosphate kinase. 	 Purines are formed by the degradation of nucleic acids & nucleotides from: Normal turnover of cellular nucleic acids. Diet. * Effective pathway (less energy is
* Synthesis of IMP: Ribose-5-phosphate (from PPP) \rightarrow addition of 2 phosphate using ATP molecule \rightarrow PRPP \rightarrow addition of amino group from glutamine \rightarrow 5-phosphoribosyl-1-amine \rightarrow 8 reactions \rightarrow IMP	used than in De Novo pathway).
Ribose 5-phosphate $PRPP \longrightarrow PRPP$ $amine$ $Inhibited$ $by IMP, AMP,$ $and GMP$	

- AMP and GMP formation:
 - These two are synthesized from IMP in 2 steps:
 - ✓ IMP \rightarrow addition of aspartate and GTP \rightarrow adenylosuccinate (by the enzyme adenylosuccinate synthetase) \rightarrow AMP will be generated (by the action of the enzyme adenylosuccinate lyase).
 - ✓ IMP → IMP dehydrogenase → xanthosine monophosphate (XMP) → addition of glutamine and ATP → GMP (by the action of the enzyme GMP synthase).
 - AMP synthesis needs GTP while GMP synthesis needs ATP.
 - If AMP & GMP are present in adequate amounts, the De Novo pathway of purine synthesis is turned off at an earlier step.
- Purine catabolism:

Ĥ

H

Uric acid

Uric acid can rearrange, by electrons moving around and deprotonation. and give us **urate** molecule.