

Bacterial genome

- What is recombinant DNA technology?

- It is the technology which uses genetic engineering to study a specific segment of DNA.
- Notice that genetic engineering means the manipulation of DNA sequence and the construction of chimeric molecules (molecules containing sequences derived from two different genes: see the image).

- How is recombinant DNA done technically (see the image)?
 - It is made by splicing (ربط) a foreign DNA segment into a small replicating molecule (such as bacterial plasmid: it is a small DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently).
 - Plasmid will replicate that foreign DNA fragment along with itself and result in a molecular clone (نسخة مماثلة) of the inserted DNA.
- What is the importance of studying recombinant DNA technology?
 - Understanding of molecular basis of inherited diseases (example: sickle-cell disease).
 - Provision of human proteins for therapeutic purposes (examples: insulin and growth hormone).
 - Provision of proteins as vaccines.
 - Diagnostic tests (example: AIDS test).
 - Diagnosis and prediction (التنبؤ) of genetic diseases.
 - Forensic medicine (الطب الشرعي).
 - Gene therapy is promising (example: sickle-cell disease).
- <u>Review of DNA structure:</u>
 - It is a double-helix with two anti-parallel strands connected to each other by complementary base-pairing:
 - ✓ (A) (T)
 - ✓ (G) (C)


Note: these bases have hydrogen bonds between them.

- What are the tools which are used in recombinant DNA?
 - Chimeric molecules.
 - Restriction enzymes:
 - ✓ They are enonucleases which cut specific DNA sequences enzymatically, chemically or physically (cutting a sequence from the plasmid of bacteria to result in a linear molecule with single-stranded sticky ends which are useful in constructing chimeric DNA).
 - Sticky end ligation is easy but may reconnect with each other or may not be in right position.

- Sticky ends are preferable to blunt ends.
- *For blunt ends, problems are solved by:*
 - New ends added by special enzymes.
 - The use of synthetic oligonucleotide linkers that could be ligated to blunt-ended DNA.
 - > T4 DNA ligase can be used for direct blunt-end ligation.
- ✓ <u>Why the name</u>? → because they restrict the growth of certain bacterial viruses called bacteriophages. They are defensive enzymes protecting DNA of the host bacteria from foreign DNA of bacteriophages.
- ✓ <u>Nomenclature of restrictive enzymes (example): EcoRI</u>
 - ✤ First latter: E for genus of bacteria from which the enzyme is isolated.
 - Second and third letters: co species.
 - $\clubsuit R: \text{ for strain.}$
 - * *Roman number*: stands for order of discovery.
- Vectors:
 - ✓ <u>There are two types of vectors which can be used in recombinant DNA</u> <u>technology:</u>
 - Cloning vectors:
 - What is a clone? → a large population of identical molecules arising from a common ancestor ($||u||^2$).
 - Cloning: it is the generation of a large number of identical DNA molecules.
 - Cloning vectors (e.g. plasmids) are used to construct chimeric DNA.
 - ▶ Host cell: is used to replicate the chimeric DNA.

<u>Cloning vectors</u>	
	*Small, circular, duplex DNA molecules.
Plasmids	*Normal Function: confer antibiotic resistance to host
	cell (the bacteria)
	*Found single or multiple in the same bacterium and
	can replicate independently from bacterial DNA.
	*DNA sequences and restriction sites of many
	plasmids are known.
	*Accept DNA fragments of 6-8 kb for cloning.
Phages (see the	*They have linear DNA.
image)	*Chimeric DNA is collected after the phge completes
	its lytic cycle.
	*Accept DNA fragments of 10-20 kb.
	*Example: phage λ
	*Have features of both: plasmid and phage.
Cosmids (see the	*Accept DNA fragment of 35-50 kb
image)	*Contain DNA sequences, cos sites, for packaging
	lambda DNA into phage.
	*BAC: Bacterial Artificial Chromosome accepts a
BAC and YAC	DNA fragment of 50-250 kb.
	*YAC: Yeast Artificial Chromosome accepts a DNA
	fragment of 0.5-3 Mb
	*Currently replaced plasmids, phages and cosmids.

- *Expression vectors:*
 - Cloning vectors do not permit expression of cloned genes but expression vectors do.
 - Because bacteria cannot process introns, the cloned sequences must be stripped of introns.
 - Cloned genes are inserted next to bacterial transcription and translation start signals.
 - Some expression vectors have restriction sites located just next to a (lac regulatory region).

Cos site

0riV

EcoRI1 Smal J

Antibioti

gene

Cos sites - provide blunt ends. R - recombinant site

_Restriction endonuclease

recognition sequence.

- These sites permit foreign DNA to be spliced into the vector for expression under the control of the (lac regulatory system).
- Some vectors contain protease inhibitor genes to enhance the final yield of the protein product.
- Host (bacteria or transgenic animals الحيوانات المعدَّلة وراثياً).
- Others (example: ligase).