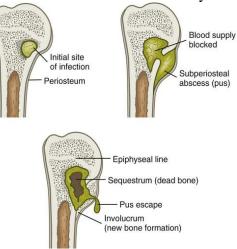

<u>Unit VII – Problem 1 – Radiology: Radiological Features of Bone and Joint Infection</u>

- What is the purpose behind radiological imaging?
 - To confirm a specific diagnosis.
 - Showing the extent of the disease.
 - To assess patient's response to the treatment.
- Below is an image showing Technetium-99m diphosphate bone scan of a patient who has osteomyelitis affecting his left tibia. This was diagnosed by increased uptake of the trace in left tibia.


- Plain radiograph in osteomyelitis:

- It has a sensitivity of 45% and specificity of 75%.
- When are you going to detect changes by using plain radiographs?
 - \checkmark Changes in soft tissues will be visible after 3 days.
 - ✓ Bone changes can be detected after 1-2 weeks.
 - ✓ Early bone changes are represented by:
 - Destruction of the cortex.
 - ✤ Bone osteopenia.
 - ✓ Late bone changes are represented by the following:
 - Sequestrum: necrotic bone which is surrounded by purulent material or granulation tissue. It my harbor bacteria thus serving as a source for chronic osteomyelitis.

Figure 5

- *Involucrum*: bone shell surrounding purulent material and sequestrum.
- Cloaca: cortical and periosteal defect through which pus drains from infected medullary cavity.

- Nuclear medicine in osteomyelitis:

- Imaging is done by a 3-phase bone scan with radiolabeled marker (which is similar to Technetium-99):
 - ✓ <u>Flow phase</u>: this is immediately after the injection of the marker. It shows areas of increased blood flow (normally occurring when there is inflammation).
 - ✓ <u>Blood pool phase</u>: 30 seconds 15 minutes after the injection of the marker. It shows areas of vascular permeability.
 - ✓ <u>Delayed phase</u>: 4 hours after injection of the marker. It shows areas of retained uptake (this is considered most specific fro osteomyelitis).
- Notice that sensitivity decreases when other conditions are present with osteomyelitis such as:
 - ✓ Surgery.
 - ✓ Trauma.
 - ✓ Diabetes mellitus.

- MRI in osteomyelitis:

• Findings are classified according to being:

Acute	Chronic
Fat is replaced with edema in medullary	• There is low signal on T1 and T2.
space of the bone. Therefore there will	• Bone sclerosis with cortical
be:	thickening.
• Low signal on T1.	• Sequestra on gadolinium enhanced
• High signal on T2, STIR or fat-	T1.
suppressed sequences.	• Narrow transition zone.

✓ <u>Soft tissue around the infected bone might also show: edema, abscess, sinus</u> <u>tract, ulcer or cellulitis.</u>

- Location of infection in long bones in hematogenous spread is related to vascular anatomy:
 - Infants up to 1 months of ageL:
 - ✓ <u>Bone infection involves</u>: metaphysic, epiphysis and the joint.
 - ✓ When there is epiphyseal infection, infants may develop slipped epiphysis and growth deformities.
 - Toddlers and older children:
 - ✓ <u>Bone infection involves</u>: metaphysic.
 - Adults (after fusion of epiphysis):
 - \checkmark infection involves joints more frequently than in children.