

- Mechanisms of tubular reabsorption:

Dynamics of reabsorption by peritubular capillaries:

• Reabsorption = K_f . Net reabsorptive force

- Sodium reabsorption along the tubule:

• Driving forces for Na⁺ reabsorption:

- ✓ Na⁺ diffuse across basolateral membrane by Na⁺-K⁺ pump.
- ✓ Na⁺ diffuses across luminal membrane into the cell according to electrochemical gradient established by Na⁺-K⁺ pump.
- Water reabsorption along the tubule:

- <u>Proximal Convoluted Tubule (PCT):</u>

• Na⁺ reabsorption:

- ✓ Early proximal tubule: co-transport with nutrients at luminal membrane.
- ✓ Late proximal tubule: mainly reabsorbed with Cl⁻

• Water reabsorption:

- \checkmark Proximal convoluted tubule is highly permeable to water.
- ✓ Water reabsorption is driven by osmotic gradient (sodium reabsortion is followed by water) through:
 - ✤ Water channels (aquaporin-1).
 - Tight junctions.
 - Simple diffusion.

• Urea reabsorption:

- \checkmark At the beginning of proximal tubule filtered urea is the same as in the plasma.
- ✓ Notice that proximal tubule is moderately permeable to urea. Therefore, some of it will be reabsorbed.
- \checkmark In impaired kidney function: less than half of urea concentration is excreted.

• K⁺ reabsorption:

- ✓ 65% of K⁺ is reabsorbed from proximal convoluted tubule.
- ✓ Paracellular reabsorption of K^{+} is represented by:
 - Solvent drag (with water).
 - ✤ Electro-diffusion.

• Glucose and amino acid reabsorption:

- ✓ This is done by secondary active transport:
 - ✤ At luminal membrane, through sodium-glucose co-transport (SGLT).
 - Crossing basolateral membrane through glucose transporters (GLUTs).
- ✓ <u>Tubular maximum-glucose reabsorption:</u>
 - Glucose at a normal plasma level is completely reabsorbed in proximal tubule by Na⁺-glucose co-transport.
 - ★ At plasma glucose of nearly 200 mg/dL \rightarrow glucosuria begins (threshold). Glucosuria is an important clinical clue to diabetes mellitus.
 - ♦ At nearly 375 mg/dL \rightarrow all transporters are fully saturated (T_m).
 - In normal pregnancy there is decreased reabsorption of glucose and amino acids in the proximal tubule leading to glucosuria and aminoaciduria.

• Phosphate reabsorption:

- Mainly in the early segment of proximal tubule.
- ✓ There are two distinct families of sodium-dependent phosphate transporters:
 - ✤ NaPi-II.
 - ✤ PiT-II.
- Notice that parathyroid hormone decreases phosphate reabsorption in early segment of proximal convoluted tubule.

• Concentrations in proximal tubule fluid:

- Loop of Henle:
 - 25% reabsorption of filtered Na⁺ in thick ascending limb
 - There is secretion of H⁺ in exchange with Na⁺
 - Characterized by the presence of $Na^+-2Cl^--K^+$ symporter.
 - 50% paracellular reabsorption of Na⁺ and other cations.
 - 10% reabsorption of filtered water.

- **Distal Convoluted Tubule (DCT):**
 - Early distal tubule reabsorption:
 - \checkmark It is impermeable to water.
 - ✓ Reabsorption of 5% of filtered NaCl.
 - ✓ Na^+ -Cl⁻ symporter on luminal membrane.

• Late distal tubule and cortical collecting duct - hydrogen secretion

- ✓ Intercalated cells:
 - * Bicarbonate reabsorption is indirect and dependent on H^+ secretion.
 - Primary active secretion of H^+ by H^+-K^+ ATPase at luminal membrane.
 - These cells have the key role in maintaining acid-base balance.
- ✓ <u>Principle cells:</u>
 - Reabsorbing 5% of Na⁺ and water and secreting K⁺
 - Water reabsorption in response to antidiuretic hormone secretion (vasopressin) through insertion of aquaporin-II

- Regulation if tubular reabsorption:
 - Peritubular capillary and renal ISF physical forces.
 - Changes in GFR (glomerulotubular balance).
 - Changes in tubular reabsorption rate of Na⁺ in the tubules which is affected by:
 - ✓ Levels of circulating hormones.
 - ✓ Pressure-Natriuresis and Pressure-Diuresis.
- Hormonal control of tubular processing:

Hormone	Site of Action	Effects
Aldosterone	Collecting tubule and duct	↑ NaCl, H_2O reabsorption, ↑ K ⁺ secretion
Angiotensin II	Proximal tubule, thick ascending loop of Henle/distal tubule, collecting tubule	↑ NaCl, H ₂ O reabsorption, ↑ H ⁺ secretion
Antidiuretic hormone	Distal tubule/collecting tubule and duct	\uparrow H ₂ O reabsorption
Atrial natriuretic peptide	Distal tubule/collecting tubule and duct	↓ NaCl reabsorption
Parathyroid hormone	Proximal tubule, thick ascending loop of Henle/distal tubule	↓PO₄ reabsorption, ↑ Ca ⁺⁺ reabsorption

