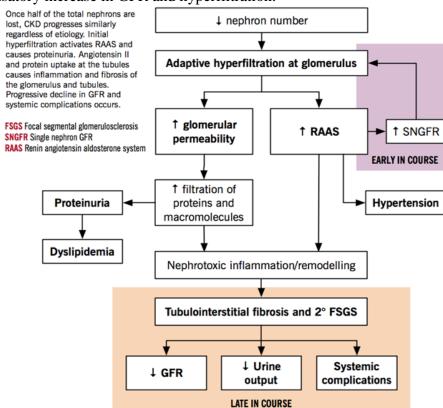
<u>Unit V – Problem 11 – Physiology: Pathophysiology of Chronic Renal Failure</u>

- What is Chronic kidney disease?


- Kidney damage for ≥ 3 months, as defined by structural or functional abnormalities of the kidney, with or without decreased GFR; manifest by either:
 - ✓ Pathological abnormalities.
 - ✓ Markers of kidney damage, including abnormalities in the composition of the blood or urine, or abnormalities in imaging tests.
- GFR < 60 ml/min/ $1.73m^2$ for ≥ 3 months, with or without kidney damage.
- Simply, chronic renal disease is a progressive deterioration in:
 - \checkmark Glomerular filtration.
 - ✓ Tubular reabsorptive capacity.
 - \checkmark Endocrine functions.
- What are the causes of chronic kidney disease?
 - Metabolic disorders: diabetes mellitus and obesity.
 - Hypertension.
 - Immunologic disorders: glomerulonephritis.
 - Renal vascular disorders: atherosclerosis and nephrosclerosis-hypertension.
 - Infections.
 - Urinary tract obstruction.
 - Congenital disorders.

What are the stages of chronic kidney disease?

Stage	Description	GFR (ml/min/1.73m ²)
1	Kidney damage with normal or \uparrow GFR	≥ 90
2	Kidney damage with mild \downarrow GFR	60-89
3	Moderate ↓ GFR	30-59
4	Severe ↓ GFR	15-29
5	Kidney failure	< 15 (or dialysis)

Pathophysiology of chronic kidney disease:

• It results from progressive and irreversible loss of nephrons (> 70%). Therefore, adaptive changes will occur in the remaining nephrons and this will result in compensatory increase in GFR and hyperfiltration.

• Chronic kidney disease results in azotemia:

- ✓ At \leq 50% GFR.
- ✓ Waste products (urea, uric acid and creatinine) will accumulate in proportion to the number of nephrons that have been destroyed.
- ✓ The overall condition can result in uremia if not well-controlled! Uremia is characterized by the following:
 - ✤ Very low GFR (< 15 ml/min).</p>
 - Uremic toxins (urea, phenols and β_2 -microglobulin).

• Volume and electrolyte imbalance:

- \checkmark There is an ability to compensate if there are more than 25% functional nephrons.
- ✓ Inability to regulate sodium excretion and inability to excrete free water will lead to extracellular fluid expansion and edema.

• Hyperkalemia (occurs when GFR < 5 ml/min):

- ✓ When GFR is > 5 ml/min, there is a compensatory aldosterone-mediated potassium secretion in distal convoluted tubules (DCT).
- ✓ Exacerbation of hyperkalmeia:
 - ✤ Exogenous factors: K⁺-rich diet.
 - endogenous factors: infection and trauma.

• Metabolic acidosis:

- ✓ Initially, there is failure to secrete hydrogen ions and decreased capacity to generate enough ammonia from cells of proximal tubule.
- ✓ With progression, accumulation of phosphate and other organic acids (sulfuric acid, hippuric acid and lactic acid) creates an increased anion-gap metabolic acidosis.

• Calcium and phosphate homeostasis:

- ✓ Hyperphosphatemia due to ↓GFR.
- ✓ Hypocalcemia: due to impaired ability of the diseased kidney to synthesize 1,25-dehydroxivitamin D (the active form of vitamin D).

• Hyperparathyroidism and bone disease:

- ✓ \uparrow PTH (Parathyroid Hormone).
- ✓ Disordered vitamin D metabolism (as mentioned above).
- ✓ Chronic metabolic acidosis: bone is a large reservoir of alkaline salts (calcium phosphate, calcium carbonate); dissolution of this buffer source probably contributes to: renal and metabolic osteodystrophy.

• Hematologic abnormalities:

- ✓ Normochromic normocytic anemia with a low reticulocyte count.
- \checkmark Due to reduced production of erythropoietin from kidneys resulting in decreased erythropoesis.

• Cardiovascular abnormalities:

- ✓ Elevated serum triglycerides and accelerated atherosclerosis.
- ✓ Congestive heart failure.
- ✓ Pulmonary edema
- ✓ Pericarditis resulting from irritation and inflammation of the pericardium by uremic toxins.

• Endocrine abnormalities:

•

- ✓ Prolonged half-life of insulin due to reduced clearance.
- \checkmark Amenorrhea and pregnancy failure due to low estrogen levels.
- ✓ Impotence, oligospermia and germinal cell dysplasia due to low testosterone levels.

Abnormalities in skin integrity:

- ✓ Pallor (due to anemia).
- ✓ Hematomas (due to clotting abnormalities).

- ✓ Pruritis (due to high phosphate levels and phosphate crystals formed by hyperparathyroidism).
- ✓ When urea concentrations are extremely high, evaporation of sweat leaves a residue of urea termed "uremic frost".

Gastrointestinal abnormalities:

- \checkmark Anorexia, nausea and vomiting (due to uremia).
- ✓ Metallic taste in the mouth (depressing appetite).
- ✓ Ulceration and bleeding of GI mucosa.

• Neuromuscular abnormalities:

- ✓ Features of uremia:
 - ✤ Asterixis.
 - ✤ Myoclonus.
 - Chorea.
 - Stupor.
 - Seizures.
 - ✤ Coma.
- ✓ <u>Peripheral neuropathy</u>: atrophy and demyelination of nerve fibers.

