Unit V – Problem 8 – Physiology: Glomerular Filtration and Renal Blood Flow

- What are the functions of kidneys?

- Removing metabolic waste products and foreign chemicals from the blood and their excretion in urine.
- Regulating:
 - ✓ Blood volume.
 - ✓ Arterial blood pressure (both blood volume and blood pressure are regulated through renin-angiotensin-aldosterone system).
 - ✓ Concentration of blood solutes: Na⁺, Cl⁻, K⁺, Ca²⁺, HPO₄²⁻
 - ✓ Acid-base balance.
 - \checkmark Blood cell synthesis (through the secretion of erythropoietin).
- Conversion of vitamin D (25-OH vitamin D) to its active form $(1,25-(OH)_2$ vitamin D) through the enzyme 1α -hydroxylase that is present in kidneys.
- Gluconeogenesis (especially in with prolonged starvation).
- Renal Blood Flow (RBF):
 - **Definition**: it is the volume of blood delivered to kidneys per unit time. This represents 25% of cardiac output which is equal to 1200 ml/min.
 - Notice that 80% of (RBF) perfuses the renal cortex and only 20% perfuses the medulla.
 - $(RBF) = \frac{(Arterial \, pressure Venous \, pressure)}{Or} Or \frac{Renal \, Plasma \, Flow \, (RPF)}{Or}$

- (RBF) and O₂ consumption:
 - ✓ 20% of O_2 consumption is for metabolic needs.
 - ✓ 80% of O_2 consumption is for active reabsorption of ions and active secretion of others.

- Urine formation/excretion:

- Blood is delivered through renal arteries to glomerular capillaries where it will be filtrated to enter renal tubules.
- Reabsorption of water and different ions occur through the course of renal tubules into peritubular capillaries.
- Some ions are actively secreted in renal tubules to be excreted in the urine.
- Filtered blood will return to systemic circulation through interlobular veins.

- Glomerular Filtration Rate (GFR):

- Inulin clearance can be used to calculate (GFR) because it is freely filtered and is neither reabsorbed nor secreted.
- Notice that creatinine clearance is an approximate measure of (GFR). Slightly overestimates (GFR) because creatinine is moderately secreted by the renal tubules.
- (GFR) = $C_{\text{inulin}} = \frac{U_{\text{inulin}} \times V}{P_{\text{inulin}}}$ ml/min
 - ✓ \underline{U}_{inulin} : urine concentration of inulin (mg/ml).
 - ✓ $\overline{\underline{V}}$: urine flow rate (ml/min).
 - ✓ <u>P_{inulin}</u>: Plasma concentration of inulin (mg/ml).
- Normal (GFR) = 125 ml/min (180 L/day).
- Glomerular capillary filtration coefficient (K_f) is depending on:
 - ✓ Premeability coefficient of membrane.
 - ✓ Surface area (A) of filtration membrane.

• Physiologic control of (GFR): it is controlled by the following mechanisms:

- ✓ Intrinsic feedback mechanisms (they normally keep RBF and GFR constant despite marked changed in arterial blood pressure):
 - * Autoregulation:
 - Myogenic (relatively minor in kidneys).
 - Tubuloglomerular feedback.

- ✓ Extrinsic feedback mechanisms:
 - Sympathetic nervous system activation.
 - ✤ Hormones.

These mechanisms are directed to adjust (RPF) and (P_{GC}) by mainly regulating arteriolar resistance or mesangial cells.

- <u>Glomerular filtration barrier:</u>

- Responsible for filtration of plasma according to size and net charge.
- Composed of:
 - \checkmark Fenestrated capillary endothelium (size barrier).
 - ✓ Fused basement membrane with heparin sulfate (negative charge barrier).
 - Effect of charge on filterability: anions (negatively charged molecules) do not pass easily through glomerular filtration barrier.
 - ✓ Epithelial layer consisting of podocyte foot processes.

- Disruption of glomerular filtration barrier in type-II diabetes:
 - ✓ Reduced endothelial glycocalyx.
 - ✓ Reduced endothelial fenestrations.
 - / Thickened glomerular basement membrane.
 - ✓ Increased foot process width with decreased filtration slit frequency.

Net filtration pressure:

Force	Effect	Magnitude (mmHg)	
Glomerular capillary blood pressure	Favors filtration	55	
Plasma-colloid osmotic pressure	Opposes filtration	30	
Bowman's capsule hydrostatic pressure	Opposes filtration	15	
Net filtration pressure (difference between force favoring filtration and forces opposing filtration)	Favors filtration	$10 \text{ (how?)} \rightarrow 55 - (30 + 15) = 10$	

Bowman's capsule hydrostatic pressure (P_{BC}) and (GFR): •

- ✓ Increased (P_{BC}) → decreases (GFR).
- ✓ Can increase markedly in certain pathological states: ✤ Urinary tract obstruction.
- Glomerular capillary colloid osmotic pressure (π_{GC}) and (GFR): •
 - ✓ Increased (π_{GC}) → decreases (GFR).
 - ✓ There are two factors which influence (Π_{GC}) :
 - ✤ Arterial plasma colloid osmotic pressure.

 - ♦ Filtration Fraction (= ^{*GFR*}/_{*RPF*})
 ▶ ↑*FF* → ↑(*π*_{GC}) → ↓(*GFR*) and vice versa.
- Glomerular capillary hydrostatic pressure (P_{GC}) anf (GFR): •
 - ✓ Magnitude of (P_{GC}) depends on (RPF) which is determined by:
 - ✤ Mean Arterial Pressure (MAP).
 - ✤ Arteriolar resistance.

Changes in glomerular dynamics:

Effect		GFR	FF (GFR/RPF)
Afferent arteriole constriction	\downarrow	\downarrow	-
Efferent arteriole constriction		1	\uparrow
†Plasma protein concentration	-	\downarrow	\downarrow
↓Plasma protein concentration	-	↑	\uparrow
Constriction of ureter	-	\downarrow	\downarrow

