$\underline{Unit\ V-Problem\ 4-Physiology:\ GI\ Regulatory\ Substances\ and\ Gastric\ Secretions}$

GI regulatory substances:

Pagulatory substance	Source Source	Action	Dogulation	Notes
Regulatory substance	Source		Regulation	Notes
Cholecystokinin	I-cells (in duodenum and jejunum)	 ↑ pancreatic secretion ↑gallbladder contraction ↓ Gastric emptying ↑ sphincter of Oddi relaxation 	• ↑ by fatty acids and amino acids	CCK acts on neural nuscarinic pathways to cause pancreatic secretion
Gastrin	G-cells (in antrum of stomach)	↑ gastric H secretion ↑ growth of gastric mucosa ↑ gastric motility	 ↑ by stomach distention, alkalinization, amino acids, peptides and vagal stimulation ↓ by stomach pH < 1.5 	 ↑↑ in Zollinger-Ellison syndrome. ↑ by chronic PPI use Phenylalanine and tryptophan are potent stimulators
Glucose-dependent insulinotropic peptide	K-cells (in duodenum and jejunum)	 Exocrine: ↓ gastric H secretion Endocrine: ↑ insulin release 	• ↑ by fatty acids, amino acids and oral glucose	 Also known as gastric inhibitory peptide (GIP). An oral glucose load is used more rapidly than the equivalent given by IV due to GIP secretion
Motilin	Small intestine	Produces migrating motor complexes (MMCs)	• ↑ in fasting state	Motilin receptor agonists (e.g. erythromycin) are used to stimulate intestinal peristalsis
Secretin	S-cells (in duodenum)	 ↑ pancreatic HCO₃ secretion ↓ gastric acid secretion ↑ bile secretion 	• ↑ by acid and fatty acids in the lumen of the duodenum	 Inhibitory hormone anti-growth hormone effects (inhibits digestion and absorption of substances needed for growth)
Nitric oxide		• ↑ smooth muscle relaxation, including lower esophageal sphincter (LES)		• Loss of NO secretion is implicated in ↑ LES tone of achalasia
Vasoactive intestinal polypeptide (VIP)	Parasympathetic ganglia in sphincters, gallbladder and small intestine	 † intestinal water and electrolyte secretion. † relaxation of intestinal smooth muscle and sphincters 	 ↑ by distention and vagal stimulation. ↓ by adrenergic input 	

GI secretory products:

Product	Source	Action	Regulation	Notes
Intrinsic factor	Parietal cells (stomach)	Vitamin B12-binding protein (needed for B12 uptake in terminal ileum)		 Autoimmune destruction of parietal cells → chronic gastritis and pernicious anemia
Gastric acid	Parietal cells (stomach)	• ↓ stomach pH	 ↑ by histamine, Ach and gastrin ↓ by somatostatin, GIP, prostaglandin and secretin 	Gastrinoma: gastrin- secreting tumor that causes high levels of acid secretion and ulcers refractor to medical therapy
Pepsin	Chief cells (stomach)	Protein digestion	• ↑ vagal stimulation and local acid	• Inactive pepsinogen → pepsin by H ⁺
HCO ₃	 Mucosal cells (stomach, duodenum, salivary glands & pancreas) Brunner glands (duodenum) 	Neutralizes acid	• ↑ by pancreatic and biliary secretion with secretin	• HCO ₃ is trapped in mucus that covers the gastric epithelium