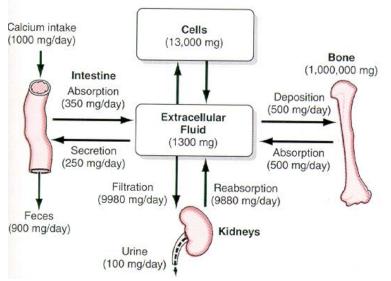

# **Unit V – Problem 12 – Physiology: Calcium Homeostasis**

C

- Calcium distribution:



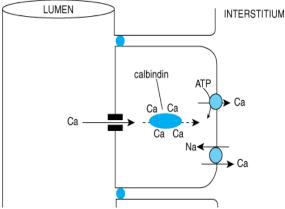

- Ionized calcium is the one which is important for the functions of the body.
- The amount of total calcium differs with the level of serum albumin.
- Corrected calcium concentration estimates the total concentration as if the albumin concentration is normal (usually taken as 40 g/L):
  - ✓ Corrected [Ca] = measured total [Ca] +  $\{0.02 \text{ x } (40\text{-albumin g/L})\}$
- As the pH of the body increases, calcium will get bound to serum proteins leading to hypocalcemia that results in tetany!

### - Calcium imbalances:

| Hypercalcemia                                                       |           |             |          | Hypocalcemia                                              |
|---------------------------------------------------------------------|-----------|-------------|----------|-----------------------------------------------------------|
| Seen                                                                | with:     | acidosis    | and      | Seen with: diarrhea, pregnancy, alkalosis,                |
| hyperparathyroidism                                                 |           |             |          | lactation and hypoparathyroidism                          |
| ↓ membrane Na <sup>+</sup> permeability and inhibits depolarization |           |             | inhihita | $\uparrow$ membrane Na <sup>+</sup> permeability, causing |
|                                                                     |           |             | minutes  | nervous and muscular systems to be                        |
|                                                                     |           |             |          | abnormally excitable                                      |
| Characte                                                            | rized by: | muscular we | akness,  | Characterized by: tetanus, laryngospasm                   |
| depressed reflexes and cardiac arrhythmias                          |           |             |          | and death!                                                |
| Degrelation of colours motobalisms                                  |           |             |          |                                                           |

- **Regulation of calcium metabolism:** 
  - **Calcium homeostasis**: the hormonal regulation of serum ionized calcium through regulating calcium exchange at the gut, kidney and bone:
    - ✓ Rapid transfer between extracellular fluid and other tissues of the body → maintains a constant free plasma [Ca].
  - **Calcium balance**: is the state of the calcium body stores, primarily in bones, which are largely a function of dietary intake, intestinal absorption, renal excretion and bone remodeling.



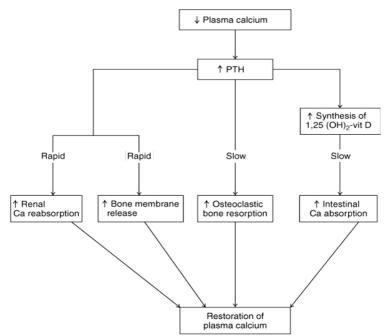

#### - **Bones and regulation of extracellular fluid calcium:**

- Celle
- Short-term exchange is represented by the calcium-buffering system: calcium is removed from the labile pool in the bone fluid into the plasma by parathyroid hormone-activated calcium-pumps located in the osteocytic-osteoblastic bone membrane.
- Long-term exchange is represented by the use of bone calcium stores on a slower time scale: calcium is moved from the stable pool in mineralized bone into the plasma through parathyroid hormone-induced dissolution of the bone by osteoclasts.



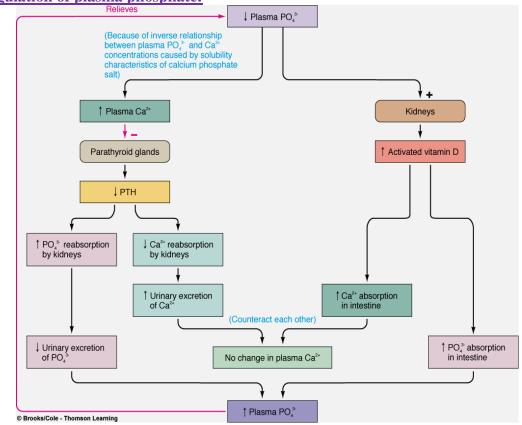
Osteocytic-osteoblastic bone membrane (formed by filmy cytoplasmic extensions of interconnected osteocytes and osteoblasts)

- Effector sites for calcium balance-GI tract:
  - Hormonal control of this absorptive process is the major mean of homeostatically regulating total-body calcium balance.
  - This is vitamin-D dependent.




- Effector sites for calcium balance-kidneys:
  - In proximal convoluted tubule, calcium reabsorption is largely passive and paracellular.
  - In thick ascending limb of loop of Henle, calcium reabsorption is dependent on sodium reabsorption and it under hormonal control.
  - In distal convoluted tubule, calcium reabsorption is active and transcellular and is under hormonal control of parathyroid hormone.

### - Parathyroid hormone:


- **Source**: chief cells of parathyroid glands.
- Function:
  - ✓ ↑ bone resorption of  $Ca^{2+}$  and  $PO_4^{3-}$
  - ✓ ↑ kidney reabsorption of  $Ca^{2+}$  in distal convoluted tubule (DCT).
  - ✓ ↓ reabsorption of  $PO_4^{3-}$  in proximal convoluted tubule (PCT).
  - ✓ ↑ 1,25-(OH)<sub>2</sub>D<sub>3</sub> (calcitriol) production by stimulating kidney 1α-hydroxylase enzyme.
- Regulation:
  - ✓ ↓ serum  $Ca^{2+} \rightarrow \uparrow$  parathyroid hormone secretion.
  - ✓ ↓ serum  $Mg^{2+} \rightarrow \uparrow$  parathyroid hormone secretion.
  - ✓ ↓↓ serum  $Mg^{2+} \rightarrow \downarrow$  parathyroid hormone secretion.





# Vitamin D (cholecalciferol):

- Source: D<sub>3</sub> from sun exposure in skin. D<sub>2</sub> ingested from plants. Both converted to 25-OH in the liver and to  $1,25-(OH)_2$  (active form) in kidneys by the enzyme  $1\alpha$ hydroxylase.
- **Function:** •
  - ✓ ↑ absorption of dietary  $Ca^{2+}$  and  $PO_4^{3-}$ ✓ ↑ bone resorption → ↑  $Ca^{2+}$  and  $PO_4^{3-}$
- **Regulation:** •
  - ✓ ↑ parathyroid hormone,  $\downarrow Ca^{2+}$ ,  $\downarrow PO_4^{3-}$  cause  $\uparrow 1,25$ -(OH)<sub>2</sub> production.
- **Deficiency of vitamin D:** •
  - It causes rickets in children (مرض الكُساح) and osteomalacia in adults (تليُّن العظام)
  - $\checkmark$  Deficiency is caused by: malabsorption,  $\downarrow$  exposure to sunlight, poor diet and chronic kidney failure.
- **Regulation of plasma phosphate:**

