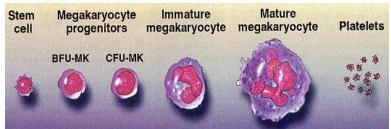

Problem 4 – Unit 6 – Physiology: hemostasis



- Platelet production:

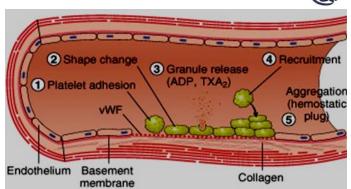
PHSC → BFU-MK → CFU-MK → Immature Megakaryocytes → Mature megakaryocytes → by shedding their cytoplasm they will give rise to multiple platelets (each MK can give rise to 1000-5000 platelets).

Note: this production of platelets is regulated by thrombopoietin which is produced by the liver and kidneys.

- Platelet characterizations:
 - They are very flexible, discoid in shape, but changing their shape according to their function and the area of injury which they must cover.
 - Normally their lifespan is 7-10 days. Then, they will be removed from the circulation by macrophages of the RE system (mainly present in spleen & liver).

- Platelet contents:

- The platelets contain three types of storage granules:
 - ✓ Dense granules: they contain ADP, calcium & serotonin.
 - \checkmark α -granules: they contain clotting factors, VWF, PDGF and other proteins.
 - ✓ Lysosomes: they contain hydrolytic enzymes.


- Vasoconstriction:

- First event to occur when there is injury to blood vessels (ex.cut) and it aims to reduce blood flow through the vessel and thus preventing further blood loss.
- It is caused by:

- ✓ Nervous stimulation of α_2 -receptors.
- \checkmark And the release of different vasoactive substances such as 5-HT & thromboxane A₂.

Platelet plug formation:

 Damage to the intima of blood vessel → basement membrane is exposed (collagen & VWF) → platelets adhesion will occur via attachment of GPIa to collagen and GPIIb/IIIa & GPIb to VWF → platelets will change their configuration to cover more area of injury → platelets will aggregate by the attachment of their active GPIIb/IIIa recpetors to fibrin bridges (coming from the coagulation cascade)→ platelets will release ADP & TXA2 to activate more platelets

- Coagulation cascade:

Extrinsic pathway	Intrinsic pathway
Activated within seconds (15s)	Activated within minutes (2-6 min)
Triggered by: tissue trauma	Triggered by: blood trauma or contact with
	collagen
Cascade:	Cascade:
Tissue injury \rightarrow Release of tissue factor (TF) \rightarrow	Blood trauma or contact with collagen $ ightarrow$
TF binding to factor VIIa \rightarrow Formation of factor	formation of factor XIIa \rightarrow Formation of factor
Xa \rightarrow Factor Xa acting with factor V to form	XIa $ ightarrow$ formation of factor IXa $ ightarrow$ factor IXa with
prothrombin activatior \rightarrow Conversion of	factor VIII will activate factor X anf form factor
prothrombin to thrombin \rightarrow Thrombin will	Xa \rightarrow Factor Xa acting with factor V to form
convert fibrinogen to fibrin.	prothrombin activatior $ ightarrow$ Conversion of
	prothrombin to thrombin $ ightarrow$ Thrombin will
	convert fibrinogen to fibrin.

- **Fibrin** enmesh platelets, blood cells and plasma and aid in the stabilization of the primary platelet plug and the formation of blood clot.
- Vitamin K is needed for the production of: prothrombin, factors VII, IX, X and protein C.
- **Calcium** is needed in all reactions of the intrinsic pathway except the first 2 steps (formation of factor XIIa and formation of factor Xia).

- Fibrinolysis:

- Plasminogen \rightarrow plasmin \rightarrow breaking fibrin
- Conversion of plasminogen to plasmin is stimulated by tissue plasminogen activator (TPA) & urokinase.
- Plasmin formation is inhibited by plasmin inhibitor.
- Intravascular anticoagulants:
 - Smoothness of the endothelium
 - A layer of glycocalyx in the endothelium
 - Thrombomodulin (protein bound to endothelium): binding thrombin to form thrombomodulin-thrombin complex and activating protein C. protein C in turn will inactivate factors V & VIII.
 - Antithrombin III inactivated thrombin.
 - Heparin: produced by mast cells and basophils and aids in the removal of thrombin from the circulation.