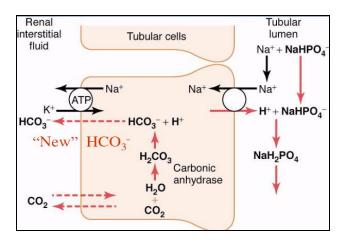
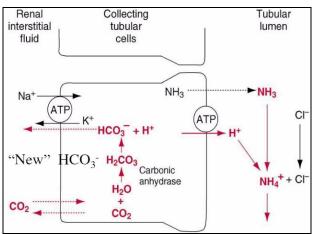

Unit I – Problem 3 – Physiology: Regulation of Acid-Base Balance

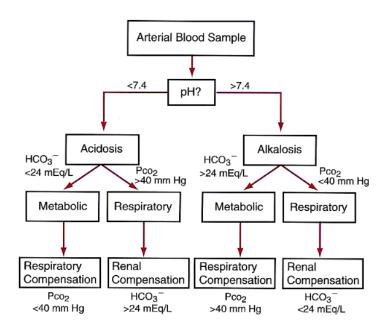

- Plasma concentration of $[H^+]$ is very small when compared to other ions (40 nmoles/L).
- Normal range of pH:
 - Normal pH of the body: 7.35-7.45 (a pH outside this range is life-threatening).
 - What are the buffer systems in the body?
 - Bicarbonate: it is the most important extracellular fluid buffer \checkmark H₂O + CO₂ \leftrightarrow H₂CO₃ \leftrightarrow H⁺ + HCO₃
 - Phosphate: it is an important renal tubular buffer \checkmark HPO₄⁻ + H⁺ \leftrightarrow H₂PO₄⁻
 - Ammonia: it is an important renal tubular buffer
 ✓ NH₃ + H⁺ ↔ NH₄⁺
 - **Proteins: they are considered as important intracellular buffers** \checkmark H⁺ + Hb \leftrightarrow HHb
 - Importance of buffer systems:
 - Normal [H⁺] concentration = 0.00004 mmol/L
 - Amount of non-volatile (غير متبخّر) acid produced = $80 \text{ mmol/L} \rightarrow 80 \text{ mmol/42L} = 1.9 \text{ mmol/L}$ which is 47,500 times more than normal [H⁺] concentration!
- Bicarbonate buffer system:
 - $H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3$
 - $pH = pKa (6.1) + \log \frac{HCO_3}{0.03 \times pCO_2}$
 - It is the most important buffer in extracellular fluid even though the concentration of the components are low and the pKa of the system is 6.1, which is not very close to normal extracellular fluid pH (7.4).
 - The components of this system (CO₂ and HCO₃) are closely regulated by the lungs and the kidneys.
 - Notice that increased hydrogen ion <u>compensation</u> concentration (↓pH) will stimulated alveolar ventilation and this will lower the pCO₂, decrease hydrogen ion concentration and increase pH (alveolar ventilation: it is the volume of gas per unit time that reaches the alveoli).
- Renal regulation of acid-base balance:
 - Kidneys eliminate non-volatile acids (H₂SO₄ and H₃PO₄).
 - Filtration of bicarbonate.
 - Secretion of [H⁺].
 - Reabsorption of bicarbonate.
 - Production of new bicarbonate.
 - Excretion of bicarbonate. Notice that kidneys conserve bicarbonate and excrete acidic or basic urine depending on body needs.
- <u>Reabsorption of bicarbonate in different</u> segments of renal tubule:
 - 85% of bicarbonate is reabsorbed in Proximal Convoluted Tubule (PCT)
 - 10% of bicarbonate is reabsorbed in thick ascending limb of loop of Henle.
 - > 4.9% of bicarbonate is reabsorbed in collecting duct.



Notice that for each bicarbonate reabsorbed, there must be a $[H^+]$ secreted (see the image in previous page).

- Renal compensation for acid-base disorders:
 - Acidosis:
 - ✓ Increased $[H^+]$ secretion to increase the pH.
 - ✓ Increased HCO_3^- reabsorption.
 - ✓ Production of new HCO_3^{-1}
 - Alkalosis:
 - ✓ Decreased $[H^+]$ secretion.
 - ✓ Decreased HCO₃ reabsorption.
 - ✓ Loss of HCO_3^- in urine.
- Why are renal tubular buffers important:
 - Minimum urine pH = 4.5
 - The maximal [H⁺] of urine is 0.03 mmol/L
 - Yet, the kidneys must excrete, under normal conditions, at least 60 mmol of non-volatile acids each day. To excrete this as free [H⁺], this process would require 2000 L or urine per day!!!
- <u>The image below shows buffering of secreted [H⁺] by filtered phosphate (NaHPO₄⁻)</u> and generation of new HCO₃⁻

- There is a high concentration of phosphate in tubular fluid (100 mmol/day of phosphate is filtered but 70% of it is reabsorbed).
- Phosphate normally buffers about 30 mmol/day of [H⁺].
- Notice that phosphate buffering capacity does not change much with acid-base disturbances (phosphate is not the major tubular buffer in chronic acidosis).
- The image below shows buffering of hydrogen ion secretion by ammonia (NH₃) in collecting tubules:



- Classification of acid-base disorders:

Acidosis: pH < 7.35				
Metabolic	\downarrow HCO ₃ ⁻			
Respiratory	$\uparrow pCO_2$			
Alkalosis: pH > 7.45				
Metabolic	↑ HCO ₃ ⁻			
Respiratory	$\downarrow pCO_2$			

	pН	pCO ₂	HCO ₃	Compensatory response
Metabolic acidosis	\downarrow	\downarrow	\rightarrow	Hyperventilation (immediate)
Metabolic alkalosis	1	1	1	Hypoventilation (immediate)
Respiratory acidosis	\downarrow	1	1	\uparrow renal HCO ₃ ⁻ reabsorption (delayed)
Respiratory alkalosis	1	↓	\downarrow	\downarrow renal HCO ₃ ⁻ reabsorption (delayed)

- Anion gap:
 - Anion gap = $Na^+ (Cl^- + HCO_3^-)$
 - In metabolic acidosis, anion gap can be increased or normal (depending on the cause):
 ✓ Increased anion gap (MUDPILES):
 - $\stackrel{\text{creased anon gap (r}}{\bullet} M: Methanol.$
 - ✤ Wi. Wiethand♦ U: Uremia.
 - D: Diabetic ketoacidosis.
 - ✤ P: Propylene glycol.
 - ✤ I: Iron tablets.
 - ✤ L: Lactic acidosis.
 - ✤ E: Ethylene glycol.
 - S: Salicylates.
 - ✓ Normal anion gap (8-12 meq/L): HARD-ASS
 - ✤ H: Hyperalimentation.
 - ✤ A: Addison's disease.
 - ✤ R: Renal tubular acidosis.
 - ✤ D: Diarrhea.
 - ✤ A: Acetazolamide.
 - ✤ S: Spironolactone.
 - S: Saline infusion.
- When there is increased aldosterone production (which occurs with excessive use of diuretics) \rightarrow there is increased [H⁺] secretion \rightarrow resulting in increased HCO₃⁻ reabsorption and production of new HCO₃⁻ \rightarrow leading to metabolic alkalosis.