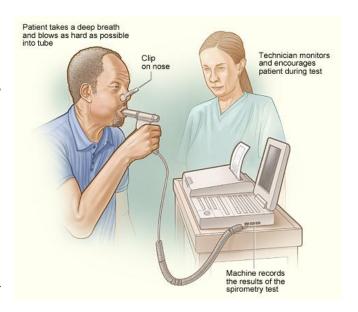
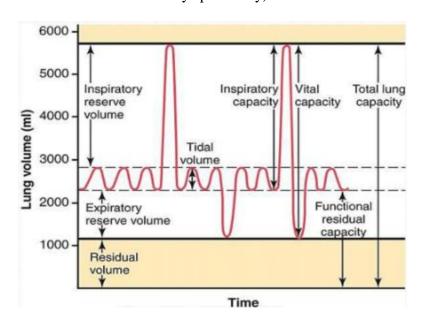
Unit II – Problem 3 – Physiology Lab: Pulmonary Function Tests (PFTs)

- What is the importance of Pulmonary Function Tests (PFTs)?


- They help in the diagnosis of a disease (differentiate if it is from a cardiac cause or pulmonary cause).
- They will help you in choosing a plan of treatment for your patient depending on the process of his disease.
- To monitor the progression of a disease and effectiveness of your treatment.
- They aid in pre-operative assessment of certain patients.

- What is spirometry?

• It is a device which measures the volume of air inspired or expired and records the time over which the volume changes occur.


What are the contraindications to perform spirometry?

- Hemoptysis of unknown origin.
- Pneumothorax.
- Unstable cardiovascular status or recent myocardial infarction or pulmonary embolus.
- Thoracic, abdominal or cerebral aneurysms.
- Recent eye, thorax or abdominal surgery.
- Patients with a history of syncope associated with forced exhalation.

- There are four lung volumes:

- **Inspiratory Reserve Volume (IRV):** it is the air which can still be breathed in after normal inspiration. This volume is used during exercise.
- **Tidal Volume (TV):** it is air which is moving into the lung with each quiet inspiration (around 500 ml).
- Expiratory Reserve Volume (ERV): it is air which can still be breathed out after normal expiration.
- **Residual Volume** (**RV**): it is air in the lung after maximal expiration (notice that residual volume cannot be measured by spirometry).

There are four lung capacities:

- **Inspiratory Capacity (IC):** it is the sum of tidal volume and IRV.
- Functional Residual Capacity (FRC): ERV + RV (it is the volume in lungs after normal expiration. Notice that FRC cannot be measured by spirometry).
- **Vital Capacity (VC):** it is the maximum volume of gas which can be expired after a maximal inspiration (IRV + TV + ERV). VC is decreased in restrictive lung diseases but is normal or slightly decreased in obstructive lung diseases.
- Total Lung Capacity (TLC): it is the volume of gas present in lungs after a maximal inspiration (IRV + TV + ERV + RV). Notice that TLC cannot be measured by spirometry.
- Ambient Temperature and Pressure Saturated (ATPS) vs. Body Temperature and Pressure Saturated (BTPS):

• Gas in a spirometer is at ambient temperature, pressure and water vapor saturation (ATPS), so the volumes of gas collected in a spirometer must be converted to equivalent volumes in the body (BTPS):

ATPS	BTPS
 Ambient temperature is less than body temperature Volume of air measured by spirometer is slightly less than the volume actually exhaled Measurements made by systems must be converted 	temperature, barometric pressure and humidity level

Classification of lung defects:

Obstructive lung disease	Restrictive lung disease
• Expiratory flow is below normal	• Lung volumes are reduced
• Examples include: asthma, emphysema	• Examples: lung fibrosis, obesity,
and cystic fibrosis	neuromuscular/ cardiovascular diseases
	and trauma/chest wall dysfunction

Additional information (more detailed):

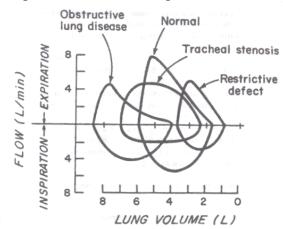
- Pulmonary Function Test (PFT):
 - ✓ It is a non-invasive test which is used to:
 - ❖ Differentiate between obstructive and restrictive pulmonary diseases.
 - ❖ Assessing severity of the disease and prognosis.
 - **\Delta** Evaluating post-treatment lung function.
 - ✓ PFT consists of different tests:
 - ❖ Static lung compartments: Vital Capacity (VC) + Residual Volume (RV) = both of them making the Total Lung Capacity (TLC).
 - ❖ Airflow: measured by ratio of Forced Expiratory Volume in 1 second to Forced Vital Capacity FEV1/FVC.
 - ❖ Alveolar membrane permeability: measured by diffusing gas capacity (DLco).
 - ❖ Methacholine challenge test: when you suspect clinically that a patient has asthma and his PFT is normal → you will do methacholine challenge test to confirm your diagnosis.
 - ✓ <80% of predicted in any lung volume or flow rate is considered abnormal, while > 120% of predicted is consistent with air trapping:
 - ❖ When you receive a PFT of a patient watch FEV1:
 - ➤ If it is >80% → this is normal.
 - > If it is <80% \rightarrow this is abnormal and you must look for FEV1/FVC ratio:
 - If it is $\ge 80\%$ \rightarrow this is a restrictive lung disease.

If it is $\leq 80\%$ \rightarrow this is an obstructive lung disease (e.g. COPD and asthma).

✓ Carbon Monoxide Diffusing Capacity (DLco):

- ❖ This is measuring how good oxygen can pass from alveoli to the blood (checking alveolar membrane permeability).
- ❖ Patient will inhale DLco gas which is composed of: Carbon Monoxide (CO), helium and room air.
- **DL**co is decreased in 2 conditions:
 - \triangleright PFT with an obstructive pattern and decreased DLco \rightarrow emphysema (destruction of alveolar wall).
 - ➤ PFT with a restrictive pattern and decreased DLco → interstitial lung disease such as fibrosis (in which the alveolar capillary membrane is thickened).

✓ Methacholine challenge test:


- ❖ This is done when you suspect clinically that a patient has asthma but PFT is normal (because patient might not have bronchoconstriction at the time the test was done).
- **❖** *How to do it?*
 - ➤ You will do PFT before giving methacholine.
 - Then, you will let the patient inhale methacholine which is a muscarinic agnoist mimicing the action of Ach and causing bronchoconstriction (asthmatic crisis).
 - You will do PFT again and check FEV1 \rightarrow if there is a decrease by $\geq 20\%$ from baseline FEV1 \rightarrow test is considered to be positive and patient has asthma.

✓ Bronchodilator reversibility:

- ❖ This is done when you have a PFT showing an obstructive pattern and you want to differentiate between COPD and asthma (because asthma is a reversible obstructive lung disease while COPD is irreversible).
- \diamond You will let the patient inhale a short-acting β2 agonist (albuterol) and then do a PFT again for him.
- ❖ Patient is considered to be asthmatic if there is a reverse in results by > 12% after using the bronchodilator.

• Flow Volume Loops:

- ✓ <u>In restrictive lung disease</u>, the loop is shifter to the right (on the x-axis) indicating decreased lung volume.
- ✓ <u>In obstructive lung disease</u>, the y-axis of the loop is altered indicating decreased flow rate.
- ✓ <u>In fixed airway obstruction</u> (tracheal stenosis; tracheal tumor or foreign object) , the flow volume loop is flattened on the top and bottom.

