

Unit IV – Problem 2 – Physiology: Endocrine Function of Pancreas & Glucose Homeostasis

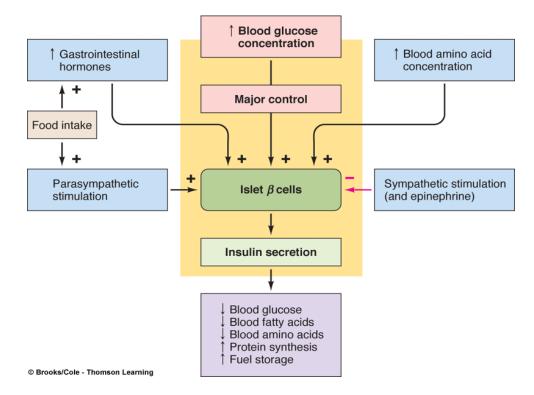
Factors increasing blood glucose	Factors decreasing blood glucose
Glucose absorption from digestive tract (from	Transport of glucose into cells for: energy
diet)	production or storage (as glycogen or
	triglycerides)
Hepatic glucose production through: breaking	Urinary excretion of glucose (occurring only if
down stored glycogen and gluconeogenesis	blood glucose level is extremely high).

- Glucose homeostasis:

Giucose nomeostasis:	
During a short fast	During a long fast
• Breakdown of liver glycogen to	• Lipolysis: breaking sown TAG
maintain blood glucose (notice that	stored in adipose tissues.
muscle glycogen is for local use	• Glucneogenesis by using non-
only because it doesn't have the	carbohydrate precursors such as:
enzyme glcose-6-phosphatase).	lactate, glycerol and amino acids.

- In well-fed state, there is facilitation of cellular storage of nutrients:

- Glucose will be stored as glycogen in the liver.
- Lipids will be stored as TAG in liver and adipose tissue.
- Amino acids will be stored as proteins in muscles.


Note: release of these metabolic substrates during fasting is mediated by the function of counter—regulatory hormones (glucagon, epinephrine, cortisol and growth hormone).

- Principle actions of insulin:

- Controlling cellular uptake of glucose in muscles and adipose tissue through GLUT-4 receptor (insulin dependent). GLUT-2 receptor which is found in β-cells of islet of Langerhans and liver is insulin-independent.
- Increasing DNA replication and protein synthesis via control of amino acid uptake.
- **Insulin receptor**: tyrosine kinase activity.
- Actions of insulin on:
 - **Carbohydrate metabolism**: stimulating glycogenesis in liver and skeletal muscles. Inhibiting glycogenolysis and gluconeogenesis.
 - **Fat metabolism**: promoting TAG storage and inhibiting lipolysis (by blocking the action of the enzyme hormone-sensitive lipase).
 - **Protein metabolism**: protein anabolic effect (in muscles).
- How is insulin secreted from β-cells of islet of Langerhans?
 - 1. Glucose enters β -cells and causes activation of glucokinase.
 - 2. This will result in increased glucose-6-phosphate.
 - 3. Closure of potassium-channels.
 - 4. Depolarization of the cell.
 - 5. Opening of Ca^{++} channels.
 - 6. Exocytosis of secretory granules.

- Factors controlling insulin secretion:

- <u>Glucagon: increasing blood concentration of glucose through:</u>

- Breakdown of glycogen stored in the liver.
- Activation of hepatic gluconeogenesis.

Note: glucagon is secreted in response to hypoglycemia.