

- Approaches for new drug invention and development:

- Identification of a new drug target.
- Rational design of a new molecule (based on an understanding of receptors and mechanisms).
- Screening for biologic activity of natural products and banks of previously discovered molecules.
- Chemical modification of a known active molecule.

Stages of developing a new drug:

- 1. Idea or hypothesis.
- 2. Design and synthesis of chemical molecule(s).
- 3. Pre-clinical phase of evaluation on experimental (animals, cells, tissues and organs).
- 4. IND (Investigational New Drug).
- 5. Clinical phase of evaluation (clinical trials: phases I to III).
- 6. NDA (New Drug Application)
- 7. post-marketing surveillance (considered as phase-IV).
- Pre-clinical testing:
 - This is considered as phase (zero) and it aims to test for the toxicity of the drug in animals or in vitro (in tissues grown in culture dish).
 - This phase studies the following properties of the drug: pharmacokinetics (how does the body deal with the drug?), pharmacodynamics (what is the effect of the drug on the body?) and toxic/ harmful adverse effects of a drug.

Safety tests			
Type of test	Approach and goals		
Acute toxicity	 Usually 2 species, 2 routes Determines therapeutic window (no-effect dose and maximum tolerated dose) and the median lethal dose (LD₅₀) 		
Subacute/ subchronic toxicity	 3 doses, 2 species The longer the duration of expected clinical use, the longer the subacute test Determines biochemical and physiologic effects. 		
Chronic toxicity	 Rodent (من القوارض كالفأر) and at least one non-rodent species for 6 months This test is done when the drug is intended to be used for prolonged periods in humans. Determines biochemical and physiologic effects (same as subacute toxicity test) 		
Effect on reproductive	• 2 species, usually one rodent and at least one rabbit		
performance	• Testing the effects on animals reproductive performance		
 Carcinogenic potential 2 species, 2 years This test is done when the drug is intended to be u prolonged periods in humans Determines gross and histological pathology 			
Mutagenic potential • Testing effects on genetic stability and mutations in b (Ames test) or mammalian cells in culture; dominan test and clastogenicity in mice.			

• What are the limitations of pre-clinical testing?

- ✓ It is time-consuming (might need 2-6 years for data collection and analysis) and expensive.
- \checkmark Large number of animals may be needed.
- ✓ Extrapolation to humans is reasonably predictive.
- \checkmark Rare adverse effects are unlikely to be detected in pre-clinical testing.

- IND (Investigational New Drug):

• After completing the pre-clinical evaluation in animals, and before testing the new drug in human subjects, sponsors must file an IND (Investigational New Drug) application by which they get a permission from Food and Drug Administration in Unites state to administer the drug to humans.

• The IND includes the following information:

- \checkmark Composition and source of the drug.
- ✓ Chemical and manufacturing information.
- ✓ All data from animal studies.
- ✓ Proposed plans for clinical trials.
- ✓ Names and credentials (شهادات) of people who will conduct the clinical trials.
- ✓ A compilation of the key data relevant to study of the drug in humans that has been made available to investigators and their institutional review boards.
- The FDA will consume 30 days to review the application. Then, they will response by:
 - ✓ Approving or disapproving.
 - \checkmark Asking for more data.
 - \checkmark Allowing initial clinical testing to proceed.

- <u>Clinical trials:</u>

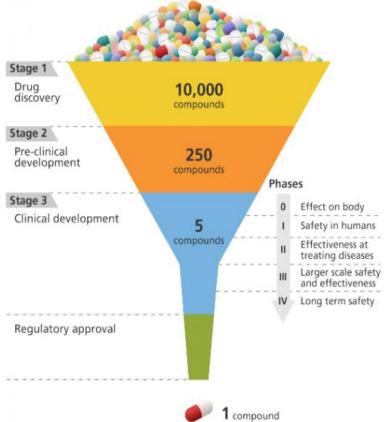
Characteristics of different phases				
Phase-I	Phase-II	Phase-III	Phase-IV	
First in humans	First in patients	Multi-site trials	Post-marketing surveillance	
10-100 participants	50-500 participants	A few hundred to a few thousand participants	Many thousands of participants	
Usually healthy volunteers	Patient-subjects receiving the experimental drug	Patient-subjects receiving the experimental drug	Patients in treatment with approved drug	
Open label	Randomized and controlled (can be placebo-controlled); may be blinded	Randomized and controlled (can be placebo-controlled); may be blinded	Open label	
Safety and tolerability pharmacokinetics	Efficacy and dose ranging	Confirm efficacy in large population	Adverse events, compliance, drug-drug interactions	
Months – 1 year	1-2 years	3-5 years	No fixed duration	
Success rate: 50%	Success rate: 30%	Success rate: 25-50%	-	

• Trial methodology (المناهج المُتَبعة في إجراء التجارب):

- ✓ Randomized: a type of scientific expirement where the people being studied are randomly allocated one or other of the different treatments under study.
- ✓ **Controlled**: it is a study testing a specific drug involving two groups of patients with the same disease (one is an experimental group and the other is a control group).
- ✓ Parallel: type of clinical study where two groups of treatments, A and B, are given so that one group receives only A while another group receives only B.
- Crossover: it is a longitudinal study in which subjects receive a sequence of different treatments (or exposures).
- ✓ **Open-label**: a clinical trial in which both the researchers and participants know which treatment is being administered.
- ✓ **Single-blind**: describes experiments where information that could introduce bias or otherwise skew the result is withheld from the participants, but the experimenter will be in full possession of the facts.
- ✓ **Double-blind**: neither the participants nor the researchers know which participants belong to the control group, nor the test group.

- NDA (New Drug Application):

- If phase-III results meet expectations, sponsors apply to FDA requesting approval to market/ sell the drug.
- This application will reviewed –from months to years- by specialists from FDA or external experts. Notice that priority approvals (within 6 months) will be given for products which represent significant improvements.
- The company which produced the drug and the FDA must agree on the (package insert = the official prescribing information) which describes:
 - \checkmark Approved indications for using the drug.
 - Clinical pharmacological information: dosage, adverse reactions. Warnings and precautions (contraindications).


Notes:

- Drug labeling is a summary for safe and effective use of the drug. It must be informative, accurate, not misleading and –when possible-based on data derived from human experience.
- ✤ Black box warning:
 - It signifies that medical studies indicate that the drug carries a significant risk of serious or even life-threatening adverse effects (which means that the drug can be fatal or causing permanent disability).
 - By proper use of the drug, a serious adverse effect can be: prevented, reduced in frequency or reduced in severity.
 - ➤ Examples:

F		
Drug	Adverse reaction	
All antidepressants	Suicidal tendencies	
Rosiglitazone	Heart failure and heart attacks	
Celecoxib	CVS and GI diseases	
Fluoroquinolones	Tendon rupture and tendinitis	
Warfarin	Bleeding to death	

- Post-marketing surveillance:

- It includes the following components:
 - ✓ <u>Marketing and promotion</u>: the business of advertising or otherwise promoting the sale of drugs.
 - ✓ <u>Prescription</u>:
 - Many patients.
 - ✤ Multiple diseases.
 - ✤ Multiple drugs.
 - ✓ <u>Monitoring</u>: measuring of medication concentrations in the blood. The main focus is on drugs with a narrow therapeutic range (drugs that can easily be under or overdosed.
 - ✓ <u>Reporting adverse effects of</u> <u>drugs.</u>
- Meta analysis:
 - It is a method which focuses on combining results from different studies

- It identifies patterns among study results, sources of disagreement among those results or other interesting relationships that may come to light.
- The general aim of meta analysis is to more powerfully estimate the true effect size as opposed to a less precise effect size derived in a single study under a single given set of assumptions and conditions.
- Advantages of meta analysis:
 - \checkmark It is able to control between study-variation.
 - \checkmark Includes moderators to explain variation.
 - \checkmark Has higher statistical power to detect an effect.
 - ✓ Detects publication bias.
 - \checkmark Shows whether the results are more varied than expected.
 - ✓ Deals with information overload: many articles published.
 - \checkmark It is a generalization to the population of studies.
 - \checkmark It is less influenced by local biases than single studies.
 - ✓ Allows derivation and statistical testing of overall factors and effect-size parameters in related studies.

