

- What is an adverse effect?

- It is a response to a drug which is noxious (ضار ومؤذ) and un-wanted and which occurs at doses normally used for prophylaxis, diagnosis or treatment of a disease or for a modification of a physiologic function (example: contraceptives which are given to alter something physiological there is no disease!).
- "There is no difference between a medicine and a poison... it is the dose which determines this issue" Paracelsus (father of toxicology which is concerned with studying harmful/ toxic effects of drugs).
 - Notice that every drug is toxic in some individuals at some dose.
- What are the factors which affect toxicity of a drug?
 - Dose: with increased dose, there is an increased risk in producing adverse effects.
 - **Route**: IV route of administration has more potential in causing harmful effects to the body because the drug will be introduced very rapidly to the systemic circulation.
 - Species.
 - Age: especially in extremes of age (e.g. newborns and elderly).
 - Gender.
 - Health.
 - Environment.
 - Individual characteristics (such as genetic makeup).
- Classification of adverse effects (based on the cause):

Type A (Augmented)	It is dose-dependent and there is an extension of the normal effect of a drug (e.g. insulin normally lowers blood sugar level but in a high dose it leads to hypoglycemia and coma)
Type B (Bizarre)	Represented by allergic reactions which are unpredictable (at the first time) and dose-independent (e.g. allergy to penicillin)
Type C (Continuous)	e.g. osteoporosis resulting from prolonged use of steroids.
Type D (Delayed)	Effect appears after a long time of stopping the drug
Type E (End of dose)	Which means something happens when stopping the drug (e.g. stopping steroids after a long time of using them results in acute adrenal crisis).

- <u>Classification of adverse effects (according to seriousness):</u>
 - Death!
 - Life-threatening effect.
 - Congenital anomaly (تشوه خلقى).
 - Hospitalization (يتسبب في إقامة المريض في المستشفى لتلقي العلاج).
 - Disability: which is defined as significant, persistent or permanent change, impairment, damage or disruption in the patient's body function/ structure, physical activities or quality of life.

- Drug toxicity can be:

- **Dose-dependent**: which is further classified to the following:
 - ✓ <u>Pharmacological</u> (changes/effects cannot be seen under the microscope):
 - *Example*: barbiturates have the potential to cause dose-dependent CNS depression which might result in coma!
 - ✓ <u>Pathological</u> (these type of changes can be observed= there is a damage to the structure of a tissue):
 - *Example*: liver toxicity which is seen with overdose of paracetamol
 - Acetaminophen is metabolized to: (non-toxic glucuronide and sulfate conjugates) and (a highly reactive metabolite NAPQI which leads to pathologic hepatic necrosis when there is acetaminophen overdose).
 - \checkmark <u>Genotoxic</u> (seen by special techniques):
 - * These changes take place at the level of DNA due to:
 - Ionizing radiation.
 - Anti-cancer drugs.
 - Certain chemicals.
- **Dose-independent** (allergic reaction):
 - ✓ <u>Type-I hypersensitivity (immediate hypersensitivity):</u>
 - Mediated by IgE antibodies with different mediators (prostaglandins, leukotrienes and histamine).
 - ✤ There will be vasodilation, edema and inflammatory response.
 - ✤ Main targets for this type of reaction are:
 - ➢ GIT (represented by food allergies).
 - Skin (urticaria: skin rash due to allergy to food, atopic dermatitis).
 - Respiratory system (rhinitis and asthma).
 - Vasculature (anaphylactic shock: مدمة ناتجة عن حساسية مفرطة تجاه
 مادة معينة)
 - ✓ <u>Type-II hypersensitivity (autoantibody-mediated):</u>
 - Mediated by both: IgG and IgM antibodies with activation of the complement system.
 - ✤ Target tissues are cells in the circulatory system.
 - Examples include:
 - > Penicillin-induced hemolytic anemia.
 - > Quinidine-induced thrombocytopenic purpura.
 - Sulfonamide-induced granulocytopenia.
 - ✓ <u>Type-III hypersensitivity (immune complex):</u>
 - Mediated by IgG antibody (there is an antigen-antibody complex which will get deposited in vascular endothelium and fix complement).
 - Serum sickness: an extensive allergic response which can mimic SLE thus producing confusion in the diagnosis.
 - ✓ <u>Type-IV hypersensitivity (delayed hypersensitivity):</u>
 - Mediated by sensitized T-lymphocytes and macrophages:
 - When sensitized cells come in contact with the antigen, an inflammatory reaction is generated by the production of lymphokines and the subsequent influx of neutrophils and macrophages.
 - Example: contact dermatitis caused by poison ivy
- Idiosyncratic (related to the individual himself): means that there is a strange unpredictable reaction in some persons who are genetically predisposed. Examples:
 - ✓ A patient who has acetylation deficiency will have an increased incidence of peripheral neuropathy when treated with isoniazid.

- \checkmark A black male with G6PD deficiency will develop hemolytic anemia when treated with primaguine.
- ✓ A patient with alteration in vitamin K epoxide reductase will have resistance to the anticoagulant action when treated with warfarin.
- **Therapeutic index (ratio):**
 - In humans: median toxic dose (TD_{50}) divided by the median effective dose (ED_{50}) .

✓ Therapeutic index = $\frac{TD_{50}}{ED_{50}}$

- In animals: median lethal dose (LD_{50}) divided by the median effective dose (ED_{50}) . •
 - ✓ Therapeutic index = $\frac{LD_{50}}{RD_{50}}$
- Therapeutic index has to be higher than (1) for the drug to be considered as • being safe:
 - \checkmark A drug with high therapeutic index is safe: penicillin.
 - \checkmark A drug with low therapeutic index is dangerous: digoxin.
- Margin of safety:
 - It is a measure of how close the lowest lethal dose is to the highest effective dose.
 - It is mainly applied with humans because the median lethal dose cannot be calculated. •
 - Margin of safety = $\frac{LD_1(lethal dose observed in one patient)}{LD_1(lethal dose observed in one patient)}$

ED99

- Pharmacolovigilance (to keep watching the drug): it is concerned in dealing with adverse effects and then coming up with recommendations to reduce them. These adverse effects can be classified according to their causality:
 - Certain: you are 100% sure that the adverse reaction cannot be explained by a disease or another drug.
 - Probable/ likely: there is an event or laboratory test abnormality with reasonable time relationship to drug intake. It is unlikely to be attributed to a disease or other drugs.
 - **Possible**: the adverse reaction can also be explained by a disease or other drugs. •
 - Unlikely: event or laboratory test abnormality with a time to drug intake that makes a • relationship improbable (but not impossible).
 - Conditional/ unclassified: more data are needed to comment on the effect.
 - Unassessable/ unclassifiable: data cannot be supplemented or verified.
- **Reporting adverse effects:**
 - Yellow-card system (in UK): an adverse effect must be reported so a necessary action can be taken.
 - This is known as adverse reaction monitoring (ARM): •
 - ✓ Patients reporting adverse effects to their doctors.
 - \checkmark Doctors reporting adverse reactions to regulating authorities.