

- Landmarks in understanding Parkinson's disease:
 - The 1st anti-hypertensive drug was reserpine \rightarrow which is depleting dopamine \rightarrow leading to manifestations of extrapyramidal tract lesion.
 - Chlorpromazine is a drug used in treating patients with schizophrenia → is a dopamine receptor blocker → also producing manifestations of extrapyramidal tract lesion.
 - A history of some patients in US who used heroin contaminated with MPTP → which is destroying dopaminergic neurons → inducing Parkinson's disease. Note: from these 3 conditions, you can notice that Parkinson's disease is mainly related to deficiency of dopamine.
- <u>The deficiency in dopamine render cholinergic neurons unchecked</u> \rightarrow therefore, there will be increased release of Ach \rightarrow leading to imbalance of circuits (formation of reverberating circuits) \rightarrow extrapyramidal system problem (hypokinesia, lead-pipe rigidity and tremor at rest).

- Therapeutic strategies in Parkinson's disease:
 - Administrating the precursor (L-DOPA) \rightarrow levodopa is given orally to the patient.
 - ✓ Levodopa is the cornerstone treatment for Parkinson's disease.
 - ✓ <u>Levodopa is given in combination with carbidopa in 2 forms:</u>
 - ✤ Either sinemet.
 - *Or sinemet-CR*: in which there is sustained release of the drug.

Note: levodopa is converted to dopamine outside the central nervous system \rightarrow this dopamine will cause cardiac side effects and it cannot cross the blood-brain barrier and thus not reaching the brain \rightarrow therefore a decarboxylase inhibitor which will inhibit peripheral decarboxylation but does not cross the blood-brain barrier (allowing decarboxylation in CNS) is administered in conjugation with levodopa.

- ✓ <u>Adverse effects:</u>
 - ✤ CNS: nausea, vomiting and hallucinations.
 - CVS (cardiovascular system): orthostatic hypotension
 - Motor complications: on-off phenomenon at trough (controlled with CR preparations) and dyskinesia (occurring when levodopa is reaching its peak concentration).
- ✓ <u>Drug interactions:</u>
 - ♦ Vitamine B6 is increasing peripheral decarboxylation of levodopa to dopamine → resulting in failure of the therapy.
 - Tricyclic antidepressents and anticholinergics prolong gastric emptying time and increase decarboxylation in the gut.

- Food which is rich in neutral amino acids interferes with the transport of L-DOPA across the blood-brain barrier.
- Anti-psychotic drugs (neuroleptics) and metoclopramide (used for vomiting) block dopaminergic receptors.
- After years of treating Parkinson's disease using the precursor replacement strategy → there will be failure of DOPA-therapy → so you have to administer dopamine agonists:
 - ✓ Which are classified to:
 - Ergolines:
 - Bromocriptine (D2 receptor). It is also used for the treatment of hyperprolactenemia.
 - **4** Pergolide (D1 + D2 receptors).
 - Non-ergolines (these are mainly used nowadays):
 - **4** Pramipexole (D3 receptor).
 - Ropinirole (D2 receptor). It has less side effects than pramipexole.
 - ✓ <u>Adverse effects:</u>
 - ✤ Nausea and vomiting.
 - ✤ Orthostatic hypotension.
 - ✤ Hallucinations and psychosis.
- Administrating monoamine oxidase-B (MAO-B) or catechol-o-methyltransferase (COMT) inhibitors to prevent degredation of dopamine (this strategy is not effective as DOPA-therapy).
 - ✓ MAO-B inhibitor (selegiline):
 - ✤ Adverse effects:
 - Serotonin syndrome: due to interaction with pethidine and SSRI antidepressants.
 - **4** Dyskinesia: due to interaction with levodopa.
 - Insomnia and vivid dreams: due to metabolites such as amphetamines.
 - ✓ <u>COMT inhibitors: (entacapone and tolcapone):</u>
 - ✤ Adverse effects:
 - ↓ Increasing levodopa-induced dyskinesia.
 - **4** Dry mouth, urine discoloration and iron chelation in gut.
- Anticholinergics (blocking muscarinic receptors):
 - Examples include:
 - ✓ Orphenadrine (important)
 - ✓ Benztropine.
 - ✓ Trihexyphenidyl.
 - ✓ Procyclidine.
 - Mainly used in treating tremors and extrapyramidal problems occurring in patients treated with antipsychotics.
 - Adverse effects:
 - \checkmark <u>CNS</u>: memory impairment and confusion.
 - ✓ <u>Autonomic</u>: glaucoma and urinary retention.
- Antihistamines (diphenhydramine which is belonging to the 1st generation):
 - Mechanism of action: central anticholinergic effect.
 - Adverse effects: sedation.
 - NMDA receptor antagonists (amantadine: it is an antivural drug):
 - Useful for controlling bradykinesia.
 - Adverse effects:
 - ✓ <u>CNS</u>: confusion, hallucination, insomnia, nightmares, dizziness and nausea.
 - \checkmark <u>CVS</u>: orthostatic hypotension.

- Note that memantine is an approved drug nowadays for the treatment of slow dementia (which is occurring in severe forms of Parkinson's disease).
- <u>β-blockers (nadolol and propranolol) are used mainly for controlling intention</u> <u>tremor and tremor associated with anxiety.</u>
- Atypical antipsychotics (clozapine and quetiapine) are used to treat hallucination.
- Iatrogenic parkinsonism is caused by:
 - Neuroleptics (typical antipsychotics).
 - Methyldopa: which is used to treat hypertension in pregnancy.
 - Metoclopramide.
 - Reserpine.
- Fava beans are a good natural source to extract levodopa from.