

- Targets for oral antidiabetic drugs:

Pancreas	• Stimulation of insulin secretion.	
	Inhibition of glucagon secretion.	
Liver, muscles and adipose tissues	• Improved insulin receptor sensitivity.	
Metabolic pathways	Suppression of glyconeogenesis.	
	• Stimulation of glycolytic pathway.	
	 Activation of PPAR-γ pathway. 	
Gastrointestinal	• Prolonging gut hormones that regulate gastric emptying and	
tract	insulin secretion; inhibition of glucose assimilation.	
Kidneys	• SGLT2- inhibitors prevent proximal tubular re-absorption of	
	glucose and promote urinary elimination of glucose	

Secretagogues:

• Sulfonylurea:

- ✓ <u>Example</u>: Glimepiride (Amaryl) which belongs to 2^{nd} generation.
- ✓ Mechanism of action: blocking K⁺-channels in β -cells of islet of Langerhans. Therefore, resulting in depolarization of the cell membrane and opening of Ca^{2+} channels voltage-gated causing the release of insulin from storage granules via exocytosis.

- ✓ <u>Adverse reactions</u>: hypoglycemia and weight gain.
- ✓ <u>Note</u>: second generation drugs of this class (such as Amaryl) are more potent (given in a low dose) and have a longer duration of action.
- Meglitinides:
 - \checkmark <u>Example</u>: rapaglinide.
 - \checkmark <u>Mechanism of action</u>: same as salfonylurea.
 - \checkmark <u>Advantages</u>: rapid onset + short duration of action.
 - ✓ <u>Adverse reactions</u>: hypoglycemia and weight gain (but less than sulfonylurea).

- <u>Sensitizers:</u>

- ✓ <u>Mechanism of action</u>: enhancing the activity of AMPK enzyme thus inhibiting liver gluconeogenesis.
- ✓ <u>Advantages</u>: causing no hypoglycemia (because it is not enhancing insulin release), reducing hyperlipidemia (less coronary artery disease) and leading to weight loss.
- ✓ <u>Adverse reactions</u>: lactic acidosis (being most important and serious), diarrhea and vitamin B12 deficiency.

• Glitazones:

- ✓ <u>Example</u>: pioglitazone.
- ✓ <u>Mechanism of action</u>: binding to PPAR- γ (which is a nuclear receptor) → causing more uptake of glucose by the liver and muscles. They also resuce liver gluconeogenesis.
- ✓ <u>Advantages</u>: causing no hypoglycemia (because they are not enhancing insulin secretion).
- ✓ <u>Adverse reactions</u>: lower limb edema and heart failure.

• Comparison between metformin and glitazones:

PARAMETER	METFORMIN	THIAZOLIDINEDIONES
Molecular target	АМРК	PPAR
Main pharmacologic action	Suppression of hepatic glucose production	Enhanced insulin sensitivity
Reduction of HbA _{1c}	1.0-1.25%	0.5-1.4%
Reduction of FFA	Minimal	Moderate
Stimulation of adiponectin	Minimal	Significant
Effect on body weight	Minimal	Increased
Peripheral edema	Minimal	Moderate
Fracture risk	None	Increased
Lactic Acidosis	Rare	None

- Glucosidase inhibitors:

- <u>Examples</u>: acarbose and miglitol
- <u>Mechanism of action</u>: inhibiting the enzyme α -glucosidase which digest complex sugars to simple sugars. These drugs are weak.
- <u>Adverse reactions</u>: GIT distress.

C

