

- <u>Below is a figue showing the metabolism of lipoproteins:</u>

What are the target for drug therapy?

- Decrease in input:
 - \checkmark Inhibition of cholesterol synthesis.
 - \checkmark Prevention of cholesterol absorption from the gut.
 - ✓ Inhibition of hepatic VLDL synthesis.
- Increase in output:
 - ✓ Enhanced conversion of cholesterol to bile acids/salts (resulting in increased LDL uptake by the liver).
 - ✓ PPAR- α activation mediated LPL activation (resulting in chylomicrons and VLDL catabolism).

- Classes of drugs:

Statins	Atorvastatin, Risuvastatin and Simvastatin	
Fibrates	Fenofibrate, Benzafibrate and Gemfibrozil	
Resins Cholestyramine, Colestipol and coleseyelam		
Nicotinic acid	Niacin-IR, Niacin-ER	
Cholesterol absorption inhibitors	Ezetimibe (Stanols, Sterols and dietary fiber)	
Omega-3 fatty acids (fish oil)	Eicosapentaenoic acid and Docosahexaenoic acid	

- <u>Statins:</u>

- There are two important agents which you must memorize: Atorvastatin and Rosuvastatin (which is considered as the most effective statin).
- **Mechanism of action**: preventing cholesterol synthesis by inhibiting the rate-limiting enzyme (HMG-CoA reductase). Therefore, there will be increased expression of LDL-receptor on the surface of the liver resulting in removal of LDL (bad cholesterol) from the blood.
- Used in: high cholesterol (drug of choice), mixed dyslipidemia, mild-moderate hypertriglyceridemia (200-500 mg/dL) and atherosclerotic artery disease (such as coronary artery disease).
- Adverse reactions include: hepatotoxicity and myotoxicity.
- **Contraindications**: hepatic disease, pregnancy and lactation.

- Bile acid binding resins:

- How to memorize them? \rightarrow these drugs always start with (cole) = (bile).
- **Mechanism of action**: inhibiting bile acid reabsorption from the ileum thus the liver has to take more cholesterol from the blood to synthesize new bile salts (increased cholesterol receptors).
- Used in: high cholesterol (2nd line drugs added to statins). Notice that these drugs are very safe for children, pregnancy and lactation.
- Adverse reactions include: GIT distress and vitamin-K malabsorption (results in bleeding tendency).
- **Contraindication**: these drugs are not used in mixed dyslipidemia since they increase the levels of triglycerides!
- Cholesterol absorption inhibitor:
 - Agent: Ezetimibe
 - **Mechanism of action**: blocking NPC1L1 in intestinal brush border thus inhibiting cholesterol absorption in small intestine.
 - Used in: high cholesterol (2nd line drug added to statins and it is better than resins).
 - Adverse reactions are rare and include: hepatotoxicity and myotoxicity.
- Fibric acid derivatives:
 - Agent: Gemfibrozil
 - **Mechanism of action**: agonist of PPAR which is up-regulating lipoprotein lipase that is degrading triglycerides.
 - **Used in:** severe hypertriglyceridemia > 500 mg/dL (drug of choice).
 - Adverse reactions include: hepatotoxicity (rare), myotoxicity (especially if combined with statins) and gallstones.
 - Note: these drugs are potentiating the action of anticoagulants.
 - Niacin (vitamin B3 which is also known as nicotinic acid):
 - **Mechanism of action:** decreasing the efflux of free fatty acids to the liver thus reducing triglycerides and VLDL synthesis in the liver. It also decreases the conversion of HDL to LDL.
 - Used in: low HDL (drug of choice), high triglycerides (2nd line) and high LDL (2nd line).
 - Adverse reactions include: hepatotoxicity (rare), hyperglycemia, hyperuricemia (resulting in gout), GI distress and severe flushing.

TYPE OF DRUG	EFFECT ON LDL	EFFECT ON HDL	EFFECT ON TRIACYLGLYCEROLS
HMG CoA reducatase inhibitors (statins)	¥¥¥¥	††	↓↓
Fibrates	ł	†††	$\downarrow\downarrow\downarrow\downarrow\downarrow$
Niacin	ţ↓	††††	₩₩
Bile acid sequestrants	↓ ↓↓	1	Minimal
Cholesterol absorption inhibitor	Ų	t	¥

