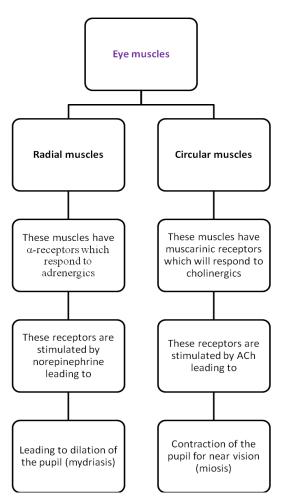


- Receptors in all ganglia –either in sympathetic or parasympathetic systems- are nicotinic and they utilize acetycholine. Therefore, when a nicotinic blocker is given such as pralidoxime, this is going to generate a mixed-effect on both sympathetic and parasympathetic systems.
- Postganglionic neurons in the parasympathetic system secrete acetylcholine which will bind to muscarinic receptor on the effector organs.
- Postganglionic neurons in the sympathetic system release norepinephrine (mostly) as a neurotransmitter. They might also release acetycholine in sweat glands and the adrenal medulla.
- Synthesis and breakdown of acetylcholine:
 - Choline + acetyl CoA \rightarrow via cholinacetyl transferase \rightarrow acetylcholine
 - This acetylcholine is going to be stored in vesicles and will only be released when calcium enters nerve terminals driving the vesicles to undergo exocytosis.
 - Breakdown of acetylcholine: ACh → via acetyolcholine esterase → acetate + choline (these two products are re-used).
- Synthesis of catecholamines:
 - Tyrosine → via hydroxylase → dopa → via decarboxylase → dopamine → via hydroxylase → norepinephrine → via methyltransferase → epinephrine
 - Notice that dopamine, norepinephrine and epinephrine are known as catecholamines.
 - When catecholamines are released:
 - ✓ 80% is epinephrine.
 - ✓ 20% is norepinephrine.
- Fate of catecholamines after they finish their action:
 - Norepinephrine is re-used.
 - Or degraded in the synapse by Catechol-O-Methyl Tranferase (COMT).
 - Or degraded inside the neurons by Monoamine Oxidase (MAO).


ANS receptors				
Adrenergic		Cholinergic		Donominorgio
Alpha (α)	Beta (β)	Muscarinic	Nicotinic	Dopaminergic
 α₁: vasoconstrictio n, increased blood pressure and dilation of the iris α₂: inhibition of further release of NE (negative feedback) 	 β₁: increased heart rate and lipolysis β₂: other sympathetic actions β₃: lipolysis 	M1 - M2 - M3 - M4 - M5	 N_N: in neurons N_M: in muscles 	D1 – D2 – D3 – D4 – D5

The following information are based on (Aysha Khalid) notes:

- **Direct-acting cholinergic agonists**: they have longer duration than ACh and show little specificity in their actions (which limits their clinical usefulness).
 - ✓ <u>Acetylcholine</u>: it has the same parasympathetic effects and it activates both muscarinic and nicotinic receptors.
 - ✓ <u>Carbachol</u>: it activates both muscarinic and nicotinic receptors. It can also release epinephrine and norepinephrine from the adrenal medulla.
 - ✓ <u>Pilocarpine</u>: it activates muscarinic receptors. This drug can enter the brain and cause CNS disturbances.

• Indirect-acting cholinergic agonists:

- ✓ <u>Neostigmine</u>: reversible.
- ✓ <u>Parathion</u>: irreversible.
- \checkmark <u>Pralidoxime</u>: it is a drug which reactivates acetylcholine esterase.
- Cholinergic antagonists-Antimuscarinic agents:
 - ✓ <u>Atropine</u>: it causes reversible, non-selective blockade of muscarinic receptors (to prevent ACh from binding).
 - \checkmark <u>Tropicamide</u>: it is considered as a short-acting atropine.
- **Cholinergic antagonists-ganglionic blockers**: these drugs block the entire output of the autonomic nervous system at nicotinic receptors
- Cholinergic antagonists-neuromuscular blocking drugs: these are clinically useful during surgery for producing complete muscle relaxation, orthopedic surgery and tracheal intubation.
- Direct-acting adrenergic agonists:
 - Epinephrine: it has a rapid onset but a brief duration of action so it is better to administer it intramuscularly.
 - \checkmark <u>Norepinephrine</u>: it may be given intravenously to insure a rapid onset.
- Indirect-acting adrenergic agonists:
 - ✓ <u>Amphitamine.</u>
- Mixed-actions adrenergic agonists:
 - ✓ <u>Ephedrine.</u>
- Adrenergic antagonists-β blockers:
 - <u>Propranolol</u>: after oral administration, this drug is totally absorbed because it is highly lipophilic. It can cross the blood-brain barrier (BBB).
- Effect of autonomic drugs on the eye:

