

- How (antimicrobial) drugs reach the brain?

- **Blood-brain barrier** (which is composed of non-fenestrated capillary endothelium + astrocyte sheath) has tight junctions which will not allow all molecules to cross from blood to the brain
- **Blood-CSF barrier** (which is composed of fenestrated capillary endothelium + ependymal cells of choroid plexus)
- Generally, drugs are usually given intravenously or orally (and sometimes intrathecally: used less frequently nowadays).
 - ✓ <u>Intrathecally-administered drugs</u> are directly introduced to ventricles (as a result the drug will get into the cerebrospinal fluid CSF).
 - ✓ <u>Intravenously administered drugs</u> (most common in case of meningitis): they get into venous blood →entering systemic circulation → and eventually reaching arterial blood supply of the brain → from there, there are 2 possible pathways for the drug:
 - *Either entering extracellular fluid compartment* of the brain through blood-brain barrier.
 - ✤ Or entering cerebrospinal fluid compartment through blood-CSF barrier.

Note: drugs can move between extracellular fluid and CSF through brain-CSF barrier and depending on concentration gradient. Drug will also diffuse from between extracellular fluid and intracellular fluid compartment of brain cells.

- Factors influencing passage of drugs from blood into brain/CSF:
 - **Molecular weight**: small molecules pass more easily than large molecules. Fortunately, most of antimicrobial drugs are low-molecular drugs.
 - **Protein binding**: greater the protein binding inverses the relation of how effectively a molecule can get across the blood-brain barrier.
 - **Lipid/water partition coefficient (lipid solubility):** greater is the lipid solubility the more easier for the molecule to get across the blood-brain barrier.
 - **pKa** (ionization constant): greater is the unionized form \rightarrow more lipid solubility.
 - Status of meninges: whenever there is meningeal inflammation, even those drugs with modest permeability can have a good therapeutic effect. At birth, blood-brain barrier is not fully functional (it takes several weeks to reach the adult level of maturation) → thus a newborn baby will have increased permeability of the meninges.

- **<u>Principles of treatment in meningitis:</u>**
 - Blood and CSF samples are obtained before starting treatment.
 - In acute meningitis, antibiotics are almost always given intravenously (IV). An exception is tuberculosis in which treatment is orally
 - After patient becomes afebrile, treatment is recommended to be continued for 1 week.
 - \checkmark In pneumococcal meningitis: it is continued for 2 weeks.
 - \checkmark In gram-negative infections: it is continued for 3 weeks.
 - General management of complications:
 - ✓ <u>Maintaining fluid balance</u>, prevention of aspiration and maintinence of patent <u>airway</u>.
 - ✓ <u>Treatment of convulsion</u> (using anti-convulsants with least effect in producing respiratory depression). Example: lorazepam.
 - ✓ <u>Treatment of cerebral edema</u> (which results from inflammatory process): by giving mannitol and corticosteroids (especially dexamethasone).
 - ✓ <u>Treatment of headache</u>: by analgesics.
- <u>Therapeutic issues pertinent to drug management of meningitis:</u>
 - Passage of antimicrobials is increased with presence of meningeal inflammation (inflammation increases permeability of antimicrobials such as penicillin).
 - Concomitant (المُصاحب) steroid therapy can alter passage of certain antimicrobials (such as penicillins and aminoglycosides) across the blood-brain barrier.
 - Antimicrobial(s) choice is based on antimicrobial spectrum and the ability of antimicrobial to achieve sufficient concentration in the brain/CSF:
 - ✤ <u>Very good</u>: metronidazole (very useful to treat brain abscess because it is achieving much higher concentration in the abscess that in blood).
 - ✤ <u>Good</u>: penicillins and cephalosporins (recommendations for meningitis are limited with 3rd generation cephalosporins).
 - Fair/poor: aminoglycosides, clindamycin, macrolides (azithromycin is the only macrolide which is used for meningitis) and vancomycin (has an important role especially in empiric therapy of meningitis).
- <u>Empiric therapy for bacterial meningitis:</u>

Empire merapy for succertar mennights.		
Age group/predisposition	Recommended therapy	
Neonate (up to 2 months of age)	Ampicillin + cefotaxime	
Infants and children (2-5 years)	Cefotaxime + vancomycin	
Older children and adults	Cefotaxime + vancomycin	
Elderly (+50 years)	Cefotaxime + vancomycin	
Post-neurosurgical procedure	Ceftazidime + vancomycin	
Closed head trauma	Cefotaxime + vancomycin	
Open head trauma	Ceftazidime + vancomycin	

Definitive therapy for bacterial meningitis:

Pathogen	Recommended treatment
H.influenzae:	
 β-lactamase negative 	Ampicillin
 β-lactamase positive 	Cefotaxime
N.meningitidis:	
Penicillin-sensitive	Penicillin G or ampicillin
Penicillin-resistant	Cefotaxime
Strep.pneumoniae:	
Penicillin-sensitive	Penicillin G or ampicillin
Penicillin-resistant	Cefotaxime + vancomycin
Strep.agalactiae	Penicillin G/ampicillin + gentamycin
L.monocytogenes	Penicillin G/ampicillin ± gentamycin
Enterobacteriaceae	

• E.coli, Klebsiella	Cefotaxime	G	
Enterobacter, serratia	Cefepime	K	
P.aeruginosa	Cefepime		
S.aureus:			
• MSSA	Naficillin or oxacillin.	Naficillin or oxacillin.	
• MRSA	Vancomycin ± rifampin	Vancomycin ± rifampin	
Staph.epidermidis	Vancomycin ± rifampin		

Corticosteroid (dexamethasone) therapy in meningitis:

Age groups	Causative organisms	Outcomes
Infants/children	S.pneumoniae	Controversial
Children	H.influenzae	Decrease neurologic sequelae especially hearing loss
Adolescents/adults	Mycobacterium tuberculosis	Improves survival but not severe disability
Adults	S.pneumoniae	Better outcome
All age groups	N.meningitidis, fungi anf viruses	No evidence supports a decrease in neurologic sequelae.

- Note: rationale against corticosteroid use:
 - ✓ Decreased passage of some antimicrobials across blood-brain barrier.
 - ✓ Increased incidence of GI-bleeding.
- Prevention of meningitis (chemoprophylaxis):
 - **Patients with CSF-rhinorrhea or CSF-otorrhea**: oral penicillin-V (500mg till leak stops).
 - Close contacts of meningococcal meningitis: rifampin 600mg for 2 days.
 - **Pregnant women (in whom rifampin is contraindicated) and children:** ceftriaxone.
- **<u>Tuberculous meningitis:</u>**
 - Isoniazide, rafmpicin, pyrazinamide and ethambutol \rightarrow for 2 months.
 - Followed by: isoniazide + rifampin → for 10 months. <u>Note: prednisone (it is a prodrug which is hydroxylated to prednisolone in the liver)</u> <u>may be required in tuberculous meningitis if there is:</u>
 - ✓ Spinal block.
 - ✓ *Raised intracranial pressure.*
 - ✓ Neurological signs.
 - ✓ *High CSF protein levels.*
- Herpes encephalitis: intravenous acyclovir (for 10 days).