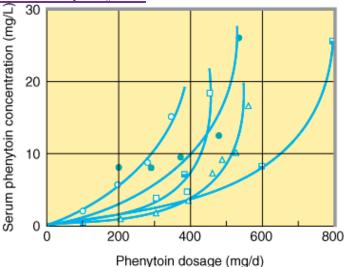


- Terminologies:

- Anti-convulsants: they are used to control convulsions seen in certain types of epilepsy. Convulsions may also occur in other situations/ conditions which are not related to epilepsy (examples include: meningitis and drug overdose).
- Anti-epileptic drugs.
- Anti-seizure drugs:
 - ✓ What is the definition of seizure? \rightarrow it refers to an abnormal electrical activity of the brain.
 - ✓ <u>Anti-seizure drugs</u>: are medications controlling seizures or convulsions or stop ongoing series of seizures.
- Approaches to screening anti-seizure drugs in animal models:
 - **Maximal Electroshock Seizure (MES):** in which an electrical stimulus will be provided to an animal through electrodes so it develops convulsions (these convulsions represent tonic-clonic seizure in which the body of the animal will stiffen first and then jerky movements will start).
 - **Chemical (pentylenetetrazole) induced seizures**: these will represent absence type of seizures.
 - Genetically susceptible strains of rats and mice.
 - A focused approach for screening antiseizure drugs in vitro:
 - Facilitation of inhibitory (GABAergic) transmission.
 - Reduction of excitatory (glutamenergic) transmission (note: another excitatory amino acid neurotransmitter is aspartate).
 - Modification of ionic conductance:
 - ✓ <u>Sodium (Na⁺)</u>: inactivation of sodium-channels interferes with depolarization.
 - $\checkmark \quad \underline{\text{Chloride (Cl})}: \text{ chloride channels are important for hyperpolarization and they are linked with GABA (note: benzodiazapines act through chloride channels).}$
 - ✓ Calcium (Ca⁺⁺) channels.
- Antiepileptics classification (the following drugs are those which you must study and memorize for the exam):
 - **Hydantoins**: they are on of the earliest developed antiepileptic drugs (Note: the 1st drug which was developed to treat epilepsy is potassium promide). An example of this classification is "phenytoin". Phenytoin is also class 1a sodium channel cardiac antiarrhythmic.
 - Iminostelbenes: an example is "carbamazepine".
 - **Succinimides**: an example is "ethosuximide".
 - **Carboxylic acid**: an example is "valproic acid" → it is a broad-spectrum antiepileptic drug with different mechanisms of action but not preferred to be used as the 1st option because it is expensive and producing unpredictable hepatotoxicity. "divalproate" is a prodrug which is converted to valproic acid (the active form) in the body.
 - Barbiturates: they are used as:
 - \checkmark Anticonvulsants.
 - \checkmark General anesthetics.
 - ✓ Sedative hypnotics.

An example is "phenobarbitone" which is also acting as a long-term anesthetic. "primidone" is the prodrug which is converted to phenobarbitone (the active form) in the body.

- **Oxazolidinediones**: they are less used nowadays because they cause toxicity.
- **Benzodiazepines**: these are used to control convulsions. Examples include "diazepam" and "lorazepam" which is likely to produce respiratory depression in postictal period.
- Miscellaneous:


- ✓ ACTH and corticosteroids.
 - Piracetam (used for treatment of age-related memory problems).
- ✓ Acetazolamide (which is a diuretic acting through inhibition of the enzyme carbonic anhydrase and thus affecting the electrolyte environment of neurons).
- <u>Newer drugs for epilepsy</u>: they are rarely used as drugs of choice unless the 1st line drug is not controlling the condition. Therefore, you consider adding a second drug which you will select from this category. The most important ones being:
 - Gabapentin.
 - γ-vinyl GABA
 - Pregabalin.

Note: these drugs are mainly used for treatment of neuropathic pain.

The following drugs in the table are very important (these are what you must memorize for the exam):

Drug	Effective Level (mcg/mL)	High Effective Level ¹ (mcg/mL)	Toxic Level (mcg/mL)
Carbamazepine	4-12	7	> 8
Primidone	5-15	10	< 12
Phenytoin	10-20	18	> 20
Phenobarbital	10-40	35	> 40
Ethosuximide	50-100	80	> 100
Valproate	50-100	80	> 100

- As you can notice from the table above, the high effective dose is near the toxic levels. Therefore, you cannot administer a very low dose to the patient because there will be no therapeutic effect. On the other hand, if you increase the dose administered to the patient → you might cause unwanted adverse effects (there must be a balance and you must be very careful).
- Dose-dependent kinetics of phenytoin:

- The normal range of dose of phenytoin is 300-400 mg/d. as you increase the dosage there is proportionate increase in plasma concentration of the drug, but when you increase the dosage beyond 400 mg/d there will be disproportionate increase in plasma concentration of the drug (which means that the drug shifted from 1st order kinetics to zero order kinetics).
- Mode of action of antiepileptic drugs:
 - Suppression of seizure discharge or spread of seizure in the brain (you don't need to memorize other points which are mentioned in the slide).

- <u>Electrophysiologic effects of antiepileptics:</u>

Electrophysiologic effects of antiepheptics.						
Effect	Mechanism	Drugs				
Inhibit neuronal	Prolongation of sodium	Carbamazepine-phenytoin-				
depolarization	channel inactivation	topiramate				
Reduce thalamic	Blockade of t-type calcium	Ethosuximide-valproate				
pacemaker current	channels					
Produce neuronal hyperpolarization	Opening of chloride	Vigabartin-valproate-				
	channels by activation of	benzodiazapines-				
	GABA receptors	barbiturates				

Characteristics of antiepileptic drugs:

- **Carbamazepine**: it is the drug of choice for treating partial epilepsy. Adverse effects include: GI disturbances and sedation (Note: these adverse effects occur in the first weeks but then disappear due to tolerance).
- **Phenytoin**: adverse effects of this drug include:
 - ✓ Ataxia and nystagmus (due to cerebellar toxicity which is occurring in association with long-term therapy).
 - \checkmark Sedation.
 - ✓ Hirsutism.
 - ✓ Gum hyperplasia.
 - ✓ Osteomalacia and megaloblastic anemia.

This drug is characterized by enzyme induction and high protein binding \rightarrow therefore, leading to many drug-drug interactions.

- **Valproic acid**: it is a broad-spectrum antiepileptic. Adverse effects of this drug include fine tremor, weight gain and hepatotoxicity (being the most important).
- **Ethosuximide**: adverse effects of this drug include: GI disturbances (which will disappear later due to tolerance).
- **Phenobarbitone**: this drug is used to treat febrile convulsions occurring in children but it is not preferred because it produces behavioral disturbances (school performance declines) and addiction.
- Kinetic parameters of major antiepileptic drugs:

<u>Drug</u>	<u>% Oral</u> <u>Absorption</u>	<u>t ½ (</u> hrs)	<u>Dosage</u> <u>Schedule</u>	<u>%</u> Protein Binding	<u>Time to</u> <u>Steady state</u> (days)
Carbamazepine	90 - 100	10 - 20	BID - TID	75	2-4
Phenytoin	90 - 100	6-24 Dose-dependent Time-dependent	BID	95	5-10
Valproate	100	10-16	BID	90+	2-3
Ethosuximide	90 - 100	30 - 60	BID	0	5-10
Phenobarbitone	100	80 - 100 (variable)	OD	50	2-3 wks
Topiramate	80	6-8	BID	15	2-3
Gabapentin	40-60	5-9	TID-QID	0	1-2
Pregabalin	90	6-8	BID-TID	0	1-2

- All antiepileptic drugs used as a long-term treatment are given orally (they are given parentally only in emergency situations).
- Phenobarbitone has a very long half life so it is given once daily while the majority of other antiepileptic drugs are given twice daily.
- Notice that gabapentin has the least percentage of oral absorption.

• One week is required (on average) for drugs to reach steady-state levels (equal to 5 half lives).

- Drugs of choice in epilepsy:
 - **Partial seizure**: carbamazepine (DOC) or valproic acid (an alternative).
 - Absence seizure: ethosuximide (DOC) or valproic acid (alternative).
 - **Myoclonic seizure**: valproic acid.
 - Tonic-clonic seizure: carbamazepine or valproic acid or phenytoin.

Principles of antiepileptic drug therapy:

- If the first onset of seizure occurs suddenly during adult-life → investigation must be done (because usually a lesion is suspected).
- When treating epilepsy \rightarrow always start with one drug at moderate-dosage and the titrate it upward until you reach the maximum therapeutic dose.
- Choose the drug according to age: a child female must not be treated with phenytoin because it causes:
 - ✓ Hirsutism.
 - ✓ Gingival hyperplasia.
 - ✓ Facial coarsening.
- Valproic acid is not used in treating a pregnant female → because it leads to spina bifida in the fetus. Phenytoin is also teratogenic → producing midline deformities (cleft palate).
- Health education is relevant (you must counsel the patient).
- When to consider termination of antiepileptic drug therapy? \rightarrow when there is 2-3 years period which is free of attacks.
- Management of status epilepticus:
 - Admit the patient and secure his airway.
 - Give oxygen and make the patient in semi-prone position.
 - Load the patient with IV benzodiazepine and then continue administering it with slow infusion.
 - If the patient is still not controlled \rightarrow administer fosphenytoin.
 - If still not controlled \rightarrow administer phenobarbitone or valproic acid
 - If still not controlled \rightarrow general anesthesia would be your last option (either by producing barbiturate coma through sodium thiopental or giving propofol).

