Unit VII – Problem 2 – Pathology: Fracture Healing

- **<u>Definition of a fracture</u>**: discontinuity of a bone.
- Fracture healing:
 - **Primary** healing of a bone following osteotomy (cutting of a bone).
 - Secondary healing of a bone following fracture.
- **Type of fractures:**
 - **Traumatic fracture**: following a trauma (direct force applied on the bone and breaking it).
 - **Stress (fatigue/march) fracture**: repeated microfractures resulting in a true fracture. It occurs in joggers, skiers and ballet dancers. Callus forms before fracture radiologically resembles a tumor.
 - **Pathological fracture**: the presence of a disease which leads to the weakening of bones and eventually resulting in fractures.
- <u>Complications of fractures:</u>
 - Impairment of movement and function.
 - Soft tissue and muscle necrosis (especially if a vessel is injured or the fracture is compressing on a specific area).
 - Hemorrhage might also result and develop into hypovolemic shock (which is an emergency situation).
 - Bone & cartilage necrosis.
 - Nerve damage (example: damage to the axillary nerve when a fracture occurs in the surgical neck of the humerus).
 - Tears of tendons and ligament (example: a fracture in the clavicle can lead to a tear in coracoclavicular ligaments).
 - Fat and bone marrow embolism (especially if the fracture occurs in long bones).

- <u>Repair of bone fractures: this process is composed of 3 phases (see the figure below):</u>

- Inflammatory phase (1-7 days with the appearance of callus at day 7):
 - ✓ When a fracture occurs, there will be hemorrhage followed by clot formation and neovascularization (formation of new blood vessels within the clot).
 - ✓ Standard inflammatory reactions will occur (i.e. exudation of fluid and cellular infiltration).
 - ✓ Bone death (bone necrosis) will occur and will be manifested by the absence of osteocytes and empty osteocytes lacunae.
 - ✓ Then, osteoprogenitor pluripotential cells will differentiate into:
 - <u>Osteoblasts</u>: which will synthesize osteoid and woven bone.
 - <u>*Chondrocytes*</u>: which will produce cartilage.
 - ✓ Woven bone (bone scar) will form at the periphery of a clot where vascularization is greatest. Trabeculae of reactive bone will form at periosteal and endosteal surfaces near fracture ends. Cartilage formation (by chondrocytes) and resorption by endochondral ossification (conversion of a cartilage to a solid bone) will occur.
 - What is a callus (نسبج ليّن)? It is a specialized type of specific granulation tissue occurring in fracture repair and containing woven bone + cartilage formed by osteoblasts and chondrocytes. There are 2 types of a callus:
 - ✤ <u>External</u> (periosteal).
 - ✤ <u>Internal</u> (endosteal).
- Reparative phase (starting at the end of the 1st wk of a fracture & extending to months!):
 - ✓ External and internal callus grow into fracture site.
 - ✓ Cortical cutting cones will reach the rough fracture ends which will be remodeled by osteoclasts into smooth ends.

• Remodeling phase (occurring wks after a fracture and extending to months!):

- $\checkmark\,$ Reconstruction of the fractured bone to restore full mechanical strength.
- \checkmark Woven bone is resorbed and replaced by lamellar bone.
- \checkmark Medullary callus is removed to restore medullary cavity.

Inflammation

Soon after a fracture occurs, a hematoma forms at the injury site. Macrophages and inflammatory leukocytes move into the damaged area to scavenge debris and begin producing the pro-inflammatory agents that initiate healing.

Soft callus

Inflammation triggers cell division and the growth of new blood vessels. Among the new cells, chondrocytes secrete collagen and proteoglycans, creating fibrocartilage that forms the soft callus.

Hard callus

Through endochondral ossification and direct bone formation, woven bone replaces the soft callus to create a hard callus around the broken fragments of bone.

Remodeling

Over time, mechanically strong, highly organized cortical bone replaces the weaker, disorganized woven bone. Because it is continually remodeled, bone is the only tissue to heal without a scar.

- Factors affecting cell renewal / tissue repair (modifying factors):

- Age of the patient (i.e. healing of a fracture occurs faster in children than in adults).
- Vascularity of a tissue (i.e. healing of a fracture occurs faster if there is good blood supply to the area).
- Impairment of lymph drainage.
- Early movement of affected part (i.e. for a fracture to heal, the affected part must not be moved).
- Fixation to underlying tissue (i.e. fractures occurring in the scapula will heal fast because it is fixed and surrounded by muscles).
- Presence of foreign body and irritant substances.
- Infection.
- Denervation.

- Primary healing of bone:

- No bone displacement.
- No soft tissue reaction.
- No external callus.
- Internal callus grows directly into fracture site.
- Rapid constitution of cortex including Haversian system.
- Notes:
 - Malunion (سوء الالتحام): dysfunctional fracture repair.
 - Non-union: fracture never heals.
 - **Pseudoarthrosis:** pluripotential cells become histologically indistinguishable from synovial cells and they secrete synovial fluid.

