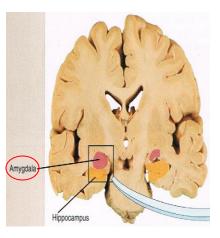
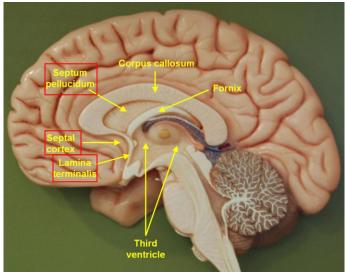
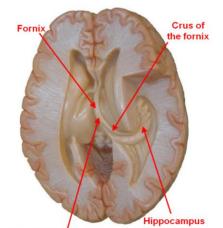

Unit VIII – Problem 11 – Neuroanatomy: Limbic System and Hypothalamus

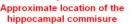
- The four lobes of the cerebral hemisphere (frontal, parietal, temporal and occipital) are recognized easily. In contrast, the limbic system is located deep inside.
- History:
 - **Thomas Willis** identified structures forming a border between cerebral hemispheres and the brainstem. He called this junction "limbus" (which means a border in Latin).
 - **Broca** identified a motor center for speech in the inferior part of the left frontal lobe (Broca's area: concerned with word formation). In addition, he noticed a collection of structures (grey matter) in the inferior medial aspect of cerebral hemispheres which was constant in many mammalian species → he called it "The Large Bordering lobe".
 - ✓ Broca included the following structures in his limbic lobe:
 - Cingulated gyrus.
 - Olfactory bulb, olfactory tract and olfactory cortex.
 - Parahippocampal gyrus and the underlying hippocampus.
 Note: he concluded that the main function of limbic system was


- James Papez: he noticed that Broca's limbic lobe was also concerned about emotion. He described a neural circuit (Circuit of Papez) which <u>included the following structures:</u>
 - ✓ Cingulated gyrus.
 - ✓ Parahippocampal gyrus and the underlying hippocampus.
 - ✓ Mamillary body.
 - ✓ Anterior nuclei of the thalamus.
- **Paul D.Maclean**: he suggested that Broca's lobe is better to be considered as a system "limbic system". In addition, he extended the range of components which are constituting the limbic system to <u>include the circuit of Papez and the</u> <u>following additional structures:</u>
 - ✓ Amygdala.
 - ✓ Hypothalamus.
 - ✓ Prefrontal cortex.
 - ✓ Thalamus.
- **<u>Function of the limbic system</u>**: it has a major role in determining emotional responses. The hippocampus additionally is involved with memory.
- The present concept of the limbic system is summarized in the image.
- Details about some components of the limbic system:



- Amygdala:
 - <u>Definition and location</u>: it is an almond shaped collection of nuclei at the tip of the tail of caudate nucleus in close relation to the hippocampus in temporal lobe.
 - ✓ <u>Functions:</u>
 - Emotional learning and memory.
 - Fear and fear conditioning.
 - ✤ Reward.
 - <u>Output</u>: the main output from amygdala (stria terminalis) is going to hypothalamus which is responsible for expression of emotions.
 - ✓ <u>Damage</u>: bilateral damage (rare) is caused by viral encephalitis and is leading to blunted emotional responses (becoming less sharp).


- Septal area:
 - ✓ <u>Definition</u>: it is the main (pleasure area) of the brain containing a group of nuclei known as septal nuclei. The septal area may include the following structures (see the image):
 - *Septum pellucidum*: it lies between the fornix and corpus callosum forming the medial wall of lateral ventricle.
 - *Lamina terminalis*: it forms the anterior border of the 3^{rd} ventricle.
 - Septal cortex: with septal nuclei beneath it (stria-medullaris-thalami is a pathway between septal nuclei and habinula "the stalk of pineal gland").



- ✓ <u>Function</u>: precise function remains largely unknown.
- \checkmark <u>Output</u>: the main output is going to the hippocampus.

• Hippocampus:

- <u>Location</u>: it lies in the floor of the inferior horn of lateral ventricle, near the parahippocampal gyrus in the inferior surface of temporal lobe.
- ✓ <u>Function</u>: formation of memory.
- ✓ <u>Afferents</u>: receiving fibers from septal area and olfactory cortex.
- ✓ <u>Efferent</u>: efferent fibers arch upwards and become crus of the fornix which is passing beneath corpus callosum → some fibers are exchanged across the midline between the two crura at the hippocampal comissure → the two

crura meet in the midline and become the body of the fornix \rightarrow fornix ends in mamillary body of hypothalamus \rightarrow then fibers will be sent to anterior thalamic nuclei \rightarrow and from there to cingulated gyrus \rightarrow and then to parahippocampal gyrus (completing circuit of Papez).

✓ <u>Damage</u>: bilateral damage to hippocampus or to fonix will result in inability to form new memory (anterograde amnesia).

• Hypothalamus:

- ✓ <u>Location</u>: it is part of diencephalon which lies in the side wall of the floor of the 3rd ventricle bordered by:
 - ✤ Thalamus.
 - Anterior commisure.
 - Lamina terminalis.
 - Optic chiasma.
 - Tuber cinereum.Mamillary body.
 - Anterior Commisure Lamina terminals Optic chiasm
- ✓ <u>Functions:</u>
 - * It is regulating the hormones released by the pituitary gland:
 - Through releasing and inhibiting hormones in the portal venous system which is in connection with anterior pituitary gland. Hormones which are released from anterior pituitary gland include the following:
 - Growth hormone (GH).
 - Melanin stimulating hormone (MSH): going to melanocytes.
 - Prolactin: going to mammary gland.
 - > ACTH: going to adrenal cortex.
 - Thyroid stimulating hormone (TSH): going to thyroid gland.
 - > FSH and LH: going to testes and ovaries.
 - Two hypothalamic nuclei are involved in production of hormones which will be stored and released from posterior pituitary gland:
 - Supraoptic nucleus: producing vasopressin (ADH) which stimulates water retention in distal convoluted tubule of the kidney.
 - Paraventricular nucleus: producing oxytocin in response to suckling thus resulting in lactation. It is also stimulating uterine contractions during labour.

- Stimulating both sympathetic and parasympathetic nervous systems mainly to regulate temperature of the body (thermoregulation) and blood pressure.
- Regulation food intake through two main nuclei:
 - **4** Lateral hypothalamus: feeding center.
 - ↓ Ventromedial nucleus: satiety center.
- Drinking: thirst center monitors blood osmolarity and controls the release of antidiuretic hormones (ADH). A damage will result in diabetes insipidus which is characterized by polyuria and polydipsia.
- *Circadian rhythm.*
- *Expression of emotions*: especially anger, fear and sexual behavior.
- ✓ <u>Outputs</u>: the main outputs are going to:
 - Brainstem.
 - ✤ Autonomic nervous system.
 - Pituitary gland.
- ✓ <u>Arterial supply:</u>
 - ✤ Anterior cerebral and anterior communicating arteries.
 - Posterior cerebral and posterior communicating arteries.

• Thalamus:

- ✓ It is paired, containing several nuclei and divided into regions by the internal medullary lamina.
- ✓ <u>There are two important nuclei in the thalamus:</u>
 - ✤ Lateral geniculate nucleus: concerned with vision.
 - * *Medial geniculate nucleus*: concerned with hearing.
- ✓ Other important relay nuclei of the thalamus:

Relay nuclei	Input	<u>Output</u>
Anterior nucleus	Mamillary body	Cingulated gyrus
VPL nucleus	Medial lemniscus and spinothalamic tract.	Somatosensory cortex
VPM nucleus	Trigeminal lemniscus	Somatosensory cortex
Lateral geniculate nucleus	retina	Primary visual cortex
Medial geniculate nucleus	Inferior colliculus	Primary auditory cortex
Ventral lateral & ventral medial nuclei	Globus pallidus and substantia nigra pars reticulata	Motor cortex

