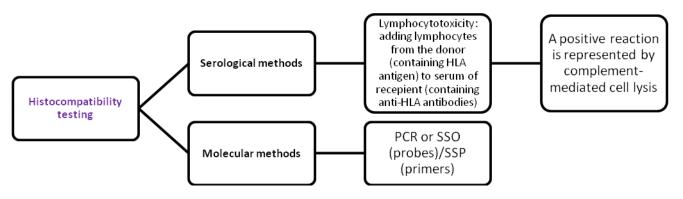


Pre-transplant (before transplantation)	Post-transplant (after transplantation)
HLA-typing	Immunological rejection
Crossmatching (showing if the recipient has antibodies	
to the donor or not)	
DDA (Danal Dagative Antihady someon)	

PRA (Panel Reactive Antibody screen)

- Human Leukocyte Antigen (HLA) = Major Histocompatibility Complex (MHC)
- What is it? cluster of genes which are important in:
 - ✓ Immune recognition.
 - \checkmark Signaling between cells of the immune system.
- **Discovery**: HLA was discovered in 1950s when they found antibodies to leukocytes in the sera of:
 - ✓ Multiple-transfused patients.
 - ✓ Multi-parous females.


In 1973, they discovered that there is an association of HLA antigens with specific diseases.

• There are two classes of MHC (both presenting on short arm of chromosome 6): notice that the mode of inheritance of MHC is haplotype (which means that 50% is inherited from each parent):

MHC class-I	MHC class-II	
\checkmark It is present in all nucleated cells of the body	✓ Antigen-presenting cells (macrophages, B-	
✓ Sub-classified to: A, B and C	lymphocytes and dendritic cells).	
✓ Function: cytosol-derived antigen recognition	✓ Sub-classified to: D, DR, DQ and DP	
by cytotoxic T-cells (CD8+)	✓ Function: processing vesicle-derived antigen	
	to helper T-cells (CD4+)	

Notes:

- ✓ Each of HLA-A, HLA-B, HLA-C and HLA-DR is a separate genetic locus.
- ✓ The extensive range of HLA antigens which can be expressed by individuals at each of these loci is known as MHC polymorphism.
- ✓ *Homozygousity*: refers to the inheritance of two same alleles (from each parent) for the same locus.
- ✓ *Heterozygous*: refers to the inheritance of two different alleles (from each parent) for the same locus.
- Organ transplantation rejection:
 - Cytotoxic T-cells (CD8+) of the recipient recognize foreign MHC class-I antigens of the donor.
- Bone marrow transplant rejection = graft versus host disease
 - Donor's T-cells attack recipient's MHC class-II antigens.
 - HLA-typing:
 - Function:
 - ✓ Paternity testing (فحص الأبوّة).
 - ✓ Prior to transplantation to select donor.
 - \checkmark Disease association.

- Crossmatching:
 - Potential donor cells (lymphocytes: which express HLA antigens) will be added to serum of the recipient (which might contain anti-HLA antibodies). Then, you will look for the reaction by:

- ✓ <u>Complement-dependent cytotoxicity (CDC).</u>
- ✓ <u>Flow cytometry crossmatch (FCXM)</u> using immunofluorescence (this is an alternative method to CDC). This method has many advantages:
 - Detecting non-complement mediated antibodies.
 - ✤ Faster turn around time.
 - Lower incidence of ambiguous results (نتائج غامضة وملتبسة) due to poor cell viability.
 - Direct detection of IgG antibodies, thus avoiding false positive reactions caused by IgM autoantibodies.
- A negative crossmatching result is required to proceed with the procedure of transplantation.
- Panel Reactive Antibody Screen (PRA):
- Only the recipient is needed to be tested if he has anti-HLA antibodies or not.
- Methods:
 - ✓ <u>Complement-dependent cytotoxicity (CDC).</u>
 - ✓ <u>ELISA</u>
 - ✓ <u>Flow cytometry.</u>

- HLA-matching: graft survival

- One year graft survival rate is:
 - ✓ <u>94% in recipient of two haplotype match (HLA identical)</u>. Patient lives for 26.9 years!
 - ✓ <u>89% and 90% when one haplotype match parent or sibling</u>. Patient lives for 12.2 years.
- Generation of allograft rejection response: there are three mechanisms of rejection
 - Cytotoxic T-cells (CD8+).
 - Delayed type hypersensitivity mediated by helper T-cells (CD4+).
 - Antibodies produced by plasma cells.