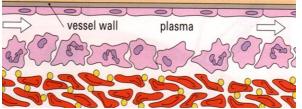
# <u>Unit V – Problem 9 – Immunology: Type-III Hypersensitivity & Immune Complex Disease</u>



### - <u>Type III (immune complex-mediated) hypersensitivity reaction:</u>

- The immune complexes that cause disease may either involve self or foreign antigens bound to antibodies.
- These immune complexes are filtered out of the circulation in the small vasculature, so their sites of ultimate damage do not reflect their sites of origin.
- These diseases tend to be systemic, with little tissue or organ specificity.
- Summary: type III hypersensitivity is characterized by:
  - ✓ Systemic damage.
  - ✓ Immune complexes activate complement.
  - ✓ Self or foreign antigens.

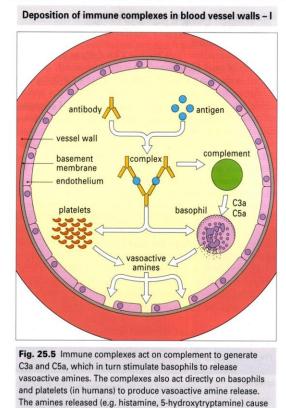

# • Examples of type III hypersensitivity reactions:

| Disease                                  | Antigen involved                                                                        | Clinical manifestations                                  |
|------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                          | 0                                                                                       |                                                          |
| Systemic Lupus                           | Double-stranded DNA, Sm and                                                             | Nephritis, arthritis, vasculitis                         |
| Erythematosus (SLE)                      | other nucleoproteins                                                                    | and butterfly facial rash                                |
| Post-streptococcal<br>glomerulonephritis | Streptococcal cell wall antigens<br>(may be planted in glomerular<br>basement membrane) | Nephritis and "lumpy bumpy deposits"                     |
| Arthus reaction                          | Any injected protein                                                                    | Local pain and edema at site of injection                |
| Serum sickness                           | Various proteins                                                                        | Arthritis, vasculitis and nephritis (confused with SLE!) |
| Polyarteritis nodosa                     | Hepatitis B virus antigen                                                               | Systemic vasculitis                                      |

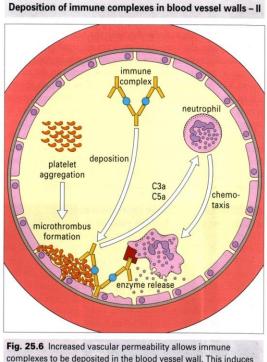
#### Immune complex disease:

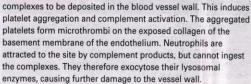
### • Immune complexes are composed of:

- ✓ Antigen.
- $\checkmark$  Antibody.
- ✓ Complement.
- Normal clearance of immune complexes:
  - ✓ They bind to erythrocytes and transported to the liver where they are removed by hepatic macrophages.
  - ✓ Immune complexes which are released from erythrocytes are taken up by cells bearing receptors for Fc and complement (e.g. macrophages).
  - ✓ Complement solubalization of large complexes produces small soluble complexes which may be taken up directly by tissue macrophages.
- Role of erythrocytes in immune complex disease:
  - ✓ Immune complexes attached to erythrocytes are kept away from vessel walls




- Complex clearance by mononuclear phagocytes:
  - ✓ <u>Large immune complexes are cleared most quickly than small immune</u> <u>complexes (why?):</u>
    - Because they present an IgG-Fc lattice to reticuloendothelial cells (macrophages) with Fc-receptors, permitting higher avidity binding to these cells.
    - ✤ They also fix complement better than small complexes.
- Hemodynamic factors affecting complex deposition:
  - $\checkmark$  High blood pressure.
  - $\checkmark$  Turbulence at bifurcations of arteries (favoring deposition of immune complexes).


### • Biological effects of C5a:


- $\checkmark$  Activation of neutrophils.
- ✓ Neutrophil adhesion.
- $\checkmark$  Neutrophil emigration and chemotaxis.
- ✓ Activation of monocytes.
- ✓ Mast cell degranulation resulting in smooth muscle contraction and increased vascular permeability.
- **Opsonization and phagocytosis**: C3b or C4b complement will bind to a bacterium enhancing phagocytosis via macrophages which express complement-receptors on their surfaces.

### • Deposition of immune complexes in blood vessel walls:



endothelial cell retraction and thus increase vascular permeability.





# • Immune complex deposition in the kidney (depending on the size):

- ✓ Large complexes become deposited on the glomerular basement membrane.
- ✓ Small complexes pass through the basement membrane and are seen on the epithelial side of the glomerulus (subepithelial).

