Problem 7 – Unit 6 – Immunology: MHC & transplantation

What are the conditions in which there will be production of anti-HLA antibodies?

- **Rejection** (this occurs when transplantation is done but the HLA of the donor and the recipient are not matching).
- A multiparous female (having borne more than one child): there will be anti-HLA antibodies to part of the fetus because 50% of his HLA reading is inherited from his father while the other 50% is inherited from the mother.
- Why do we need to do HLA typing (also known as tissue typing):
 - It is done when **transplantation** is needed to check if the donor is matching with the recipient so rejection doesn't occur.
 - It is used to check for paternity (الأبوّة والأصل).
 - There are some **HLA-associated diseases**:
 - ✓ The most important is ankylosing spondylitis in which the relative risk (RR) is increased.
 - ✓ Other diseases include: type-I diabetes (DR3 & DR4), Systemic Lupus Erythematosus (SLE) and rheumatoid arthritis.

The MHC molecule is expressed on chromosome 6 and there are two main classes:

The time mercual is expressed	MHC-I	MHC-II
Gene products	HLA-A, HLA-B (complex) & HLA-C (antigenically not strong & will not evoke rejection in the process of transplantation)	HLA-DP, HLA-DQ, HLA-DR
Tissue distribution	In all nucleated cells + platelets	On antigen presenting cells (APC): macrophages, B-lymphocytes and dendritic cells
Recognized by	Cytotoxic T cells (CD8+)	Helper T cells (CD4+)
Peptides bound	Endogenously synthesized	Exogenously synthesized
Function	Elimination of infected host cells by cytotoxic T cells	Presentation of foreign antigens to helper T cells
Presence of invariant chain	No	Yes
Structure	α heavy chain with 3 extracellular domains & an intracytoplasmic carboxyterminus + light chain (β_2 -microglobulin)	Two chain structures of similar length called α and β
Expression	Codominantly expressed: which means that each cell expresses two A, two B and two C products (one from each parent)	Codominantly expressed: same concept

HLA-restriction:

MHC-I → interacts with CD8+ cytotoxic T-cells.

Where intracellular viral proteins will be converted to peptides by proteosomes present in the cytosol of the cell \rightarrow these peptides will transported to the rough endoplasmic reticulum via TAP-complex \rightarrow where these peptides will be loaded in MHC class I molecules and then expressed on the cell surface to be recognized by CD8+ cytotoxic T-cells.

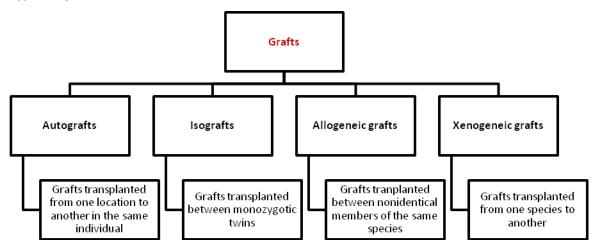
• MHC-II → interacts with CD4+ helper T-cells.

Where exogenous antigens will be taken by the cell and surrounded by a vesicle which will fuse with another vesicle that is containing the MHC class II molecule with the invariant chain \rightarrow as these vesicles fuse, the invariant chain is degraded and peptides are loaded into the MHC-II \rightarrow the complex is then transported to the cell surface where it will be accessible for interaction with helper T-cells (CD4+).

Transplantation immunology:

• We need an identical donor:

- ✓ <u>Mother & father</u>: they are haploidentical to their children because each one of them transmit 50% of their HLA reading to their children.
- ✓ <u>Siblings</u>: they are preferred as donors with 25% chance of being different than his/her brother or sister, 50% of being haploidentical and 25% of being identical.


• Methods of HLA typing (tissue typing):

- ✓ Complement-dependent lymphocytotoxicity.
- ✓ Molecular methods: including probes (SSO) or primers (SSP).

• Tissue compatibility testing involves:

- ✓ ABO blood typing.
- ✓ Cross-matching.
- ✓ The mixed lymphocyte reaction (for class II compatibility).
- ✓ Microcytotoxicity test (for class I compatibility).

Types of grafts:

- During graft rejection, MHC-I allele products are recognized as foreign by cytotoxic t-cells (CD8+) and the graft is destroyed.
- <u>Graft-versus-host disease</u>: occurs when mature T-cells inside bone marrow transplants become activated against the MHC-II products of the graft recipient.

Note: immunosuppression is required to ensure the survival of all grafts (except autografts because they are from the same person).