Reproductive system consists of:

- Bi-potential gonads (can differentiate into either male or female genitalia):
 - ✓ They appear as a pair of genital ridges formed by the proliferation of epithelium and underlying mesenchyme.
 - ✓ <u>Primitive Woflian ducts</u>: will differentiate into internal male genitalia under the influence of SRY-gene carried on Y-chromosome:
 - ❖ Influence of SRY-gene:
 - Enhancing the secretion of anti-mullerian hormone from sertoli cells which will lead to the regression of mullerian ducts.
 - Enhancing the production of testosterone from leydig cells which, in turn, will cause the formation of internal male genitalia.
 Testosterone is converted to dihydrotestosterone by the enzyme 5α-reductase

and this will result in the formation of external male genitalia.

✓ <u>Primitive mullerian ducts</u>: will differentiate into internal female genitalia when Y-chromosome is absent.

Gonadal steroid hormone biosynthesis:

- LH-hormone (from anterior pituitary) will enhance leydig cells to produce dehydroepiandrosterone and androstendione which will be converted to testosterone. Testosterone is binding to the following:
 - ✓ Androgen binding protein (in sertoli cells).
 - ✓ Sex hormone binding globulin (in plasma) \rightarrow binding 60% of testosterone.
 - ✓ Albumin (in plasma).
- Testosterone is converted in peripheral tissues to its more potent and active form \rightarrow dihydrotestosterone by the action of the enzyme 5α -reductase.
- FSH-hormone binds to its receptors which are found on the surface of sertoli cells →
 enhancing spermatogenesis under the influence of testosterone which is secreted by
 leydig cells.
- An enzyme known as aromatase is found mainly in ovaries and adipose tissue and converts testosterone to estrogen.

• The conversion of pregnenolone to testosterone needs the action of five enzymes:

- ✓ 17α-hydroxylase.
- ✓ 17,20 lyase.
- ✓ 3β -hydroxysteroid dehydrogenase.
- ✓ 17β-hydroxysteroid dehydrogenase.
- ✓ 5α -reductase.

• Notice that testosterone is metabolized by the liver to androsterone and etiocholanolone, which, after conjugation with glucouronic or sulfuric acid, are excreted in the urine as 17-ketosteroids.

<u>Hormonal Disorders</u>	
Disorder	Notes
Persistent mullerian duct syndrome	-
Defect in androgen receptor	 Testicular feminization syndrome: ✓ Spectrum: from complete or incomplete testicular feminization through genital ambiguity to infertile males. ✓ Characterized by: ❖ Female external genitalia with normal male karyotype (46 XY). ❖ Breasts development during puberty. ❖ Primary amenorrhea (sterility). ❖ Blind-ended vagina, absent uterus and fallopian tubes. ❖ Inguinal hernia: testes with normal androgen production.
5α-reductase deficiency	 Ambiguous external genitalia at birth (undergo virilization at puberty!). No dihydrotestosterone → patients will have external female genitalia.
LH	 Homozygous mutation in β-subunit of LH leads to: ✓ Delayed puberty. ✓ Spermatogenic arrest. ✓ Complete absence of leydig cells (which are producing testosterone).
Kallmann's syndrome	 Failure to complete puberty (a form of hypogonadotropic hypogonadism). JGnRH, FSH, LH, testosterone and infertility (low sperm count in males; amenorrhea in females).

- Other disorders:

• Obstructive azospermia:

✓ Congenital bilateral absence of vas deferens (due to mutation in the gene of cystic fibrosis CFTR).

• Primary ciliary dyskinesia (also known as Kartagener syndrome):

✓ Characterized by: abnormal sperm flagella.

• Noonan syndrome:

- ✓ Characteristics:
 - Short stature.
 - Congenital heart disease.
 - * Facial dysmorphism.
 - **❖** Azospermia.

• Myotonic dystrophy:

- ✓ <u>Caused by</u>: trinucleotide repeat expansion (CTG).
- ✓ Characterized by: testicular atrophy.

• Y-chromosome microdeletions: there are three deletion regions:

- ✓ AZFa: complete absence of germ cells (azospermia).
- ✓ <u>AZFb</u>: maturation arrest at the spermatocyte stage (azospermia).
- ✓ <u>AZFc (the most common type)</u>: more variable phenotype ranging from sertoli cell only (azospermia) to presence of all germ cell types (severe oligospermia).

• True hermaphroditism (46 XX or 47 XXY):

- ✓ Also known as ovotesticular disorder of sex development. It is very rare.
- ✓ Characteristics:
 - ❖ Both ovary and testicular tissue present (ovotestis).
 - Ambiguous genitalia.

• Female pseudohermaphroditism (XX):

- ✓ Ovaries are present, but external genitalia are virilized or ambiguous.
- ✓ Due to excessive and inappropriate exposure to androgenic steroids during early gestation.

• Male pseudohermaphroditism (XY):

- ✓ Testes are present, but external genitalia are female or ambiguous.
- ✓ Most common form is androgen insensitivity syndrome (testicular feminization).

