

- What is a gene?
 - A sequence of chromosomal DNA that is required for production of a functional protein (it contains both introns and exons).
- What is gene therapy:
 - It is the treatment of human diseases by transferring genetic material into a person's cell to fight/ prevent the disease.
- <u>Types of gene therapy:</u>

- Is gene therapy applied in all diseases? \rightarrow no, there are requirements:
 - Disease:
 - \checkmark The disease must be serious.
 - ✓ Incurable with conventional treatment.
 - ✓ Chronic (requires life-long treatment).
 - Gene:
 - \checkmark The gene responsible for the disease must be identified.
 - \checkmark Copies of the gene can be made in the lab.
 - \checkmark Role of protein encoded by the gene is known.
 - Target organ:
 - $\checkmark\,$ Readily accessible.
 - ✓ Long survival time.
 - ✓ Ability to replicate itself.
 - Ethical approval.
 - Diseases which are targeted by gene therapy:
 - Inherited disease with single-gene defect:
 - ✓ Severe Combined Immunodeficiency disease (SCID).
 - ✓ Duchenne muscular dystrophy.
 - ✓ Hemophilia.
 - ✓ β -thalassemia.
 - ✓ Cystic fibrosis.
 - Poly-genic (multiple gene-defects are responsible for the disease) or non-inherited diseases:
 - ✓ Infectious diseases: HIV and hepatitis-C
 - ✓ Rheumatoid Arthritis (RA).
 - \checkmark Cancer (it is the most targeted disease in gene therapy).
 - ✓ Cardiovascular diseases.

- <u>Gene therapy – step by step:</u>

- Identify the gene which is responsible for the disease.
- Make copies of the normal gene.

- Insert the copies into a vector (mostly virus):
 - \checkmark Remove the viral genome and then insert the gene of interest.
- Infect affected cells with the vector:
 - \checkmark Normal gene is carried into the nucleus.
 - \checkmark The DNA may integrate into the genome.
- Activate the gene (transcription & translation take place).
- There are two approaches of gene delivery:
 - In vivo approach: injection of the vector into the body and specifically target affected cells.
 - **Ex vivo approach**: delivering the gene to cells while they are outside the body.
- Strategy of gene therapy:
 - Loss of function mutation: <u>insert</u> a copy of normal gene.
 - Gain of function mutation: <u>replace</u> with the normal gene.
 - Cancer gene therapy:
 - ✓ Stimulation of natural killing of tumor cells (IL-2).
 - ✓ Anti-angiogenic genes (inhibiting VEGF).
 - ✓ Supply tumor suppressor genes (p53).
 - ✓ Inhibition of oncogenic proteins (such as bcr-abl).
 - ✓ Transporting anti-cancer genes selectively into cancer cells using nanotechnology (magic bullet!).
- What are the characteristics of an ideal vector?
 - Has an adequate carrying capacity.
 - Easy to produce in high concentrations.
 - Targeting specific tissues.
 - Stable.
 - No immune response, non-inflammatory and non-toxic.
 - High efficiency.
 - Long duration of expression.

Methods of gene delivery:

- **Transduction**: viral-mediated gene transfer.
- **Transfection**: non-viral mediated gene transfer.
- <u>Types of vectors:</u>
 - Viral vectors (transduction):
 - ✓ <u>Retroviruses</u>: these are RNA viruses encoding for reverse transcriptase enzyme. They are used in ex vivo gene therapy.
 - ✤ Advantages:
 - > DNA integrated into host genome.
 - Non-immunogenic and non-toxic.
 - Disadvantages:
 - ➤ Small insert size.
 - Infect only dividing cells.
 - Risk of insertional mutagenesis which leads to activation of oncogenes.
 - ✓ <u>Lentiviruses:</u>
 - ✤ Advantages:
 - Infect dividing and non-dividing cells.
 - Easier to culture than retroviruses.
 - Disadvantages:
 - Risk of insertional mutagenesis which leads to activation of oncogenes.

- ✓ <u>Adenoviruses (these are DNA viruses):</u>
 - ✤ Advantages:
 - > No risk of insertional mutagenesis.
 - ➢ Large.
 - Infect dividing and non-dividing cells.
 - ✤ Disadvantages:
 - Short duration of expression.
 - Immunogenic with high toxicity (might lead to death).
- ✓ <u>Adeno-associated viruses:</u>
 - ✤ Advantages:
 - ➤ Inserted into chromosome 19.
 - Infect wide variety of cells.
 - Long duration of expression.
 - ➤ Low immune response.
 - Disadvantages:
 - Carry small insert size.
- ✓ <u>Herpes virus:</u>
 - * Advantages:
 - Infects nervous tissue.
 - ✤ Disadvantages:
 - ➢ Neurotoxicity.
- Non-viral vectors (transfection):
 - \checkmark <u>Types:</u>
 - ✤ Liposomes.
 - Direct injection of naked DNA.
 - Receptor-mediated endocytosis.
 - Oligonucleotides.
 - ✓ <u>Advantages:</u>
 - ✤ Carrying large insert size.
 - ✤ Targeting specific cells.
 - Non-immunogenic.
 - ✤ No risk of insertional mutagenesis.
 - ✓ <u>Disadvantages:</u>
 - ✤ Low efficiency.
 - Transient expression (short-term expression).
 - Degradation of protein-DNA conjugate (by lysosomes of the cell).

- What are the problems of gene therapy?

- Short-lived nature of gene therapy.
- Immune response to vector.
- General toxicity of viral vectors.
- Insertional mutagenesis.
- Multi-gene disorders are hard to treat because you need to introduce more than one gene.
- Contamination of germ-line cell.
- Expensive.
- <u>Current status of gene therapy</u>: mostly experimental and has not proven very successful in clinical trials.
- <u>Gene doping</u>: non-theraputic use of cells, genes, genetic elements of or the modulation of gene expression having the capacity to improve athletic performance.

