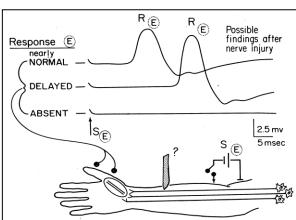


-> dorsal column tract (blue)

- Normal EMG activity:

- Motor unit action potentials (MUAPs): these are action potentials reflecting the electric activity of a single motor unit (a motor unit is 1 motor neuron and all muscle fibers which it innervates). MUAP is a compound action potential of those muscle fibers within the recording range of the electrode.
 - ✓ A simple definition of motor unit action potentials (MUAPs): electrical changes produced by the excitation of individual motor units.
- **Recruitment pattern:** refers to successive activation of the same and new motor units with increased strength of voluntary muscle contraction.
- When does paralysis of muscles occur?
 - Upper motor neuron lesions \rightarrow spastic paralysis.
 - **Lower motor neuron lesions** → flaccid paralysis.
 - **Myogenic disorders** (diseases affecting the muscle itself).
- What are the findings of EMG?
 - **Insertional activity**: a momentary discharge provoked by the movement of the needle.
 - **Spontaneous activity**: which includes:
 - ✓ Positive sharp waves.
 - ✓ <u>Fibrillations</u>: cannot be seen only detected by EMG spontaneous.
 - ✓ Faciculations: can be seen.
 - **Interference pattern**: it is the electrical activity recorded from a muscle during maximum voluntary effort.
- What are the typical findings in a lower motor neuron lesion?
 - Insertional activity: ↑
 - **Spontaneous activity**: presence of fibrillations and positive sharp waves.
 - MUAPs: large, polyphasic with reduced recruitment.
 - **Interference pattern**: reduced pattern with individual MUAPs firing at a fast rate.
- What are the typical findings in a myogenic disorder?
 - Insertional activity: normal.
 - Spontaneous activity: none.
 - MUAPs: small, polyphasic with early recruitment.
 - **Interference pattern**: low amplitude pattern at less than maximal effort.

LESION	NORMAL	NEUROGENIC LESION		MYOGENIC LESION	
Steps		Lower Motor		Myopathy	Polymyositis
Insertional Activity	Normal _	Increased		Normal	Increased
Spontaneous Activity		Fibrillation			Fibrillation
Motor Unit Potential	0.5-I.O mv 1 5-IOmsec	Large VVV Limited Recruitment		Small Unit Early \(\sqrt{M}_V \) Recruitment	Small Unit Early Recruitment
Interference Pattern	Full composition	Reduced Fast Firing Rate		Full Low Amplitude	Full Low Amplitude



How are nerve studies done?

- The nerve is stimulated.
- And the recording will be from the muscle. **Aim**: is to check the integrity of the muscle.

- Important terms:

- Motor conduction velocity: it is the speed of an impulse traveling in a motor nerve.
- **Sensory conduction velocity**: it is the speed of an impulse traveling in a sensory nerve.
- When a lower motor neuron is stimulated \rightarrow an action potential is going to be generated and it will travel along the axon of the nerve fiber until it reaches the neuromuscular junction \rightarrow where the neurotransmitter Ach will be released and binds to its receptors which are present on the muscle membrane \rightarrow this will cause local depolarization and generation of an action potential \rightarrow which will cause the release of calcium ions from sarcoplasmic reticulum \rightarrow calcium ions will bind to troponin C and expose the active sites for binding of myosin heads \rightarrow and thus contraction of the muscle will occur.
 - Note that this time which is spent in the contraction process of a muscle does not represent the velocity of impulse in the nerve (it is considered as latency). This latency can be:
 - ✓ Normal.
 - ✓ <u>Delayed</u>: in which there is increased latency and normal/decreased amplitude.
 - ✓ <u>Absent</u>: in which there is no response to supramaximal stimulation.

How to calculate nerve conduction velocity:

Distance between distal and proximal electrodes (mm)

Time difference (T2-T1)(msec) = m/s

- Normal nerve conduction velocity ranges from 50-60 m/s. A neuropathy is considered when the conduction velocity is < 25 m/s
- Examples on neuropathies and their clinical manifestations:
 - Carpal tunnel syndrome:
 - ✓ <u>Definition</u>: compression on the median nerve which is passing in carpal tunnel.
 - ✓ How to test for carpal tunnel syndrome?
 - Phalen's test: wrist flexion (60 degrees) produces pain and parasthesia in less than a minute.
 - Tinel's sign: lightly tapping on the median nerve to elicit a sensation of tingling or pins and needles in the distribution of the nerve.
 - Durkan test: pressure for 30 seconds on the median nerve will produce pain.

✓ <u>Treatment</u>: incision of flexor retinaculum to release the median nerve from pressure.

• Compression on the ulnar nerve:

- ✓ Where does it occur? Behind the medial epicondyle where the ulnar nerve passes.
- ✓ Clinical manifestation: claw hand.

• Radial nerve injury:

- ✓ Common with: mid-shaft fracture of the humerus.
- ✓ <u>Clinical manifestation</u>: wrist-drop which is also known as:
 - Saturday night paralysis.
 - Honey-moon paralysis.

• Injury to deep fibular nerve:

- ✓ <u>Resulting in paralysis of tibialis anterior muscle and thus dorsiflexion will be lost.</u>
- ✓ <u>Clinical manifestation</u>: foot drop. The patient will have a steppage gate to compensate for this condition.

What do nerve conduction studies show when there is demyelination of peripheral nerves?

- Conduction block: because demyleinated areas will be only lifted with K-channels. Therefore, there will be no influx of sodium ions (which normally cause depolarization) and no action potential will result.
- Slowing of conduction.
- Prolonged F-waves and H-reflex.
- Relation between neuropathies and nerve conduction studies:
 - **In axonal degeneration**: the conduction velocity is normal but spontaneous activities will still be detected by EMG.
 - **Demyelination**: in which the conduction velocity is decreased.
- Somatosensory evoked potential (SSEP):
 - An electrode is stimulating a finger.
 - And 2 electrodes recording from the cortex.
 - Measuring the delay to the cortex. If this delay is present, it indicates a problem in the cortex.

