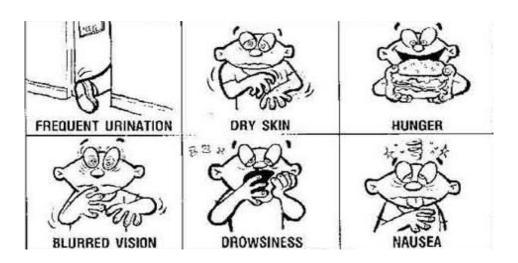

<u>Unit IV – Problem 1 – Clinical: Clinical Presentation of Type-I Diabetes Mellitus</u>


- Classification of diabetes:

- **Type-I**: insulin dependent polygenic.
- **Type-II:** insulin-independent Polygenic
- Gestational: which is transient (مؤقت) and occurs only during pregnancy.
- Secondary diabetes: due to disease in the pancreas such as pancreatitis.
- **Hormone-induced**: with increased cortisol (Cushing syndrome) or increased growth hormone (Acromegaly).
- **Drug-induced:** with glucocorticoids.

- Type-I diabetes:

- It is an autoimmune disease characterized by destruction of β -cells of islet of Langerhans (has to reach 80% for clinical manifestations to appear).
- There has to be a genetic susceptibility (HLA-DR3 and HLA-DR4) + environmental triggers (such as viral infection) \rightarrow resulting in insulitis (T cell-mediated) \rightarrow destruction of β -cells.
- Autoantibodies which can be found in the blood: anti-GAD and anti-IA2
- **Onset**: usually during childhood or puberty. There is no family history and it is not associated with obesity.
- LADA (Latent Autoimmune Diabetes in Adults):
 - ✓ Latent onset of type-I diabetes in adults.
 - ✓ Initially diagnosed as type-II but when patients will be treated with insulin they will not respond.
 - ✓ Positive autoantibodies.
- <u>Clinical manifestation of hyperglycemia:</u>
 - Polyuria and nocturia (leading to dehydration).
 - Polydipsia (thirst): resulting from dehydration.
 - Polyphagia (preferring sweet food).
 - Fatigue and lethargy.
 - Weight loss (especially in type-I diabetes).
 - Blurred vision.
 - Poor wound healing.

- **Diagnosis of diabetes:**
 - Fasting blood glucose \geq 7 mmol/L (needs conformation by repeating).
 - Random plasma glucose > 11.1 mmol/L
 - Oral glucose tolerance test (OGTT) > 11.1 mmol/L
 - $HbA_{1c} \ge 6.5\%$

	A1C (percent)	Fasting Plasma Glucose (mg/dL)	Oral Glucose Tolerance Test (mg/dL)
Diabetes	6.5 or above	126 or above	200 or above
Prediabetes	5.7 to 6.4	100 to 125	140 to 199
Normal	About 5	99 or below	139 or below

Diabetic ketoacidosis:

- It is a medical emergency associated with type-I diabetes.
- Cardinal biochemical features:
 - ✓ Hyperglycemia.
 - ✓ Hyperketonemia.
 - ✓ Metabolic acidosis.
- **Pathogenesis**: lack of insulin leads to increased lipolysis with availability of free fatty acids which are used in the synthesis of ketone bodies.
- Clinical manifestations:
 - \checkmark Abdominal pain, nausea and vomiting.
 - \checkmark Blurred vision.
 - \checkmark Dehydration, which if severe, can lead to hypovolemia and hypotension.
 - ✓ Tachycardia.
 - ✓ Kussamal breathing (rapid and deep → this helps in washing out CO₂ thus compensating for metabolic acidosis).
 - ✓ Fruity breath odor (due to acetone).
 - \checkmark if the condition is very severe, this can result in: confusion or even coma.
- Laboratory investigations:
 - \checkmark <u>Arterial blood gases</u>: to check if there is metabolic acidosis or not.
 - ✓ <u>Anion gap</u> must be calculated to conclude that the patient is suffering from metabolic acidosis. How to calculate the anion gap?
 - Anion gap = $(Na^+ + K^+) (HCO_3^- + Cl^-)$
 - ♦ What are the causes of metabolic acidosis with high anion gap? \rightarrow *MUDPILES*:

- ➢ Methanol.
- Uremia (indicating chronic renal failure).
- Diabetic ketoacidosis.
- > **P**ropylene glycol.
- Infection, Iron, Isoniazid.
- Lactic acidosis.
- **E**thylene glycol.
- Salicylates.
- \checkmark <u>Urinalysis</u>: looking for ketones.
- ✓ <u>ECG (why?)</u> → because hyperkalemia can lead to cardiac arrhythmias.
- Why is the total body potassium low?
 - ✓ Due to polyuria (which leads to loss of potassium).
 - ✓ These patients usually have abdominal pain and vomiting (loss of potassium).
- Why is the potassium high when we initially draw blood from the patient?
 - ✓ Lack of insulin leads to accumulation of potassium extracellularly.
 - \checkmark In acidosis, H ions go intracellularly while the potassium goes to the extracellular compartment.
- Management?
 - \checkmark Hydration to replace the lost volume.
 - ✓ IV insulin. If blood glucose level drops don't stop infusion of insulin, instead you can administer dextrose.
 - ✓ Infusion of potassium.

