
Unit I – Problem 3 – Biochemistry: pH and Buffers

- Electrolytes:

- **Definitions**: they are substances which give ions when dissolved in water.
- Electrolytes are divided into acids, bases and salts sense they produce ions when dissolved in water.
- Electrolytes are able to conduct electricity as a result of the mobility of positive (cations) and negative (anions) ions.
- While water is a very weak electrolyte, auto-ionization of pure water is represented by:
 - $\checkmark \quad H_2O = H^+ + OH^-$
- Electrolyte in body fluids:
 - ✓ <u>The primary electrolytes required in body fluids are:</u>
 - ◆ *Cations*: calcium, potassium, sodium and magnesium.
 - * Anions: chloride, carbonates, aminoacetates, phosphates and iodide.
- <u>pH:</u>
 - $pH = -log [H_3O^+] = log \frac{1}{|H_3O^+|}$
 - ✓ <u>Hydronium cation (H_3O^+) :</u>
 - It is a positively-charged polyatomic ion with the chemical formula H_3O^+
 - ✤ It is formed by protonation of water.
 - pH (at 25 C) of:
 - ✓ <u>Neutral solution</u> = $-\log(1.0 \times 10^{-7}) = 7.00$
 - $\checkmark \quad \underline{\text{Acidic solution:}} < 7.00$
 - ✓ <u>Basic solution</u>: > 7.00
 - **Physiologic pH range**: 7.35 7.45 (notice that the pH of gastric juice is 1-3).
 - The image below shows [H⁺] and [OH⁻] in different pH:

- Dissociation of strong and weak acids:
 - HCl is a strong acid which will dissociate completely in water: $\checkmark HCl \rightarrow H^+ + Cl^-$
 - CH₃COOH is a weak acid which will exist in aqueous solution in equilibrium of protonated and deprotonated states:
 - <u>CH₃COOH \leftrightarrow CH₃COO⁻ + H⁺</u>
- Ionization of water:
 - Water is essentially a neutral molecule but ionizes slightly: $\checkmark H_2O + H_2O \leftrightarrow H_3O^+ + OH^-$
 - The equilibrium of the autoionization of water is given by ion product constant of water (Kw), which at 25 C is:
 - ✓ $\underline{\mathbf{K}_{w}} = [\mathbf{H}^{+}] \times [\mathbf{OH}^{-}] = 1.0 \times 10^{-14} \text{ M}^{2}$ (and it is always maintained).

- Buffers:

- A mixture of a weak acid or a weak base and its salt that resist changes in pH when small amounts of an acid or a base are added.
- Maximum buffering occurs at pKa \pm 1 pH unit.
- Physiological buffering systems:
 - ✓ Bicarbonate/ carbonic acid.
 - ✓ Phosphate.
 - ✓ Protein.
- Handerson-Hasselbalch equation:
 - $pH = pKa + log [A^-] / [HA]$
 - \checkmark [HA]: concentration of the undissociated weak acid.
 - ✓ $[A^-]$: concentration of the unconjugate base of [HA].
 - ✓ pKa = 6.1
 - ✓ In normal blood, the $[HCO_3^-]/[H_2CO_3]$ ratio is 20:1 (log 20 = 1.3)
 - Therefore, in normal blood:
 - ✓ $pH = 6.1 + \log [20/1]$
 - ✓ pH = 6.1 + 1.3
 - ✓ pH = 7.40

