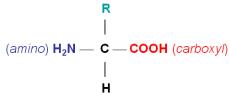
- Nitrogenous groups:

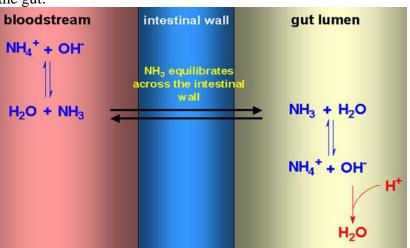

NH	Imino group
NH_2	Amino group
NH ₃	Ammonia or azane
NH ₄	Ammonium

- <u>Ammonia (NH₃):</u>

- Characteristics: highly water-soluble; colorless; irritant gas with a unique pungent odor (رائحة حارقة ولاذعة).
- Ammonia reacts with tissue water to produce ammonium hydroxide:
 ✓ NH₃ + H₂O ↔ NH₄OH ↔ NH₄⁺ + OH⁻
- Sources of blood ammonia (notice that normal level = 10-50µmol/L):
 - ✓ Protein catabolism (breakdown) in the liver.
 - ✓ Skeletal muscles during exercise.
 - ✓ Intestinal bacteria.
- Importance of ammonia:
 - ✓ Intermediary role in metabolism of amino acids and proteins.
 - ✓ <u>Maintenance of acid-base balance:</u>
 - Formation increases in metabolic acidosis.
 - Formation decreases in metabolic alkalosis.

- Disposal of Amino nitrogen:

- Urea: it is the major disposal form of amino acids amino groups.
- Urea cycle: a series of reactions distributed between mitochondrial matrix and cytosol consuming 3 ATP equivalents to 4 high-energy nucleotide phosphates. Notice that urea is the only new compound generated by the cycle; all other intermediates and reactants are recycled.
- Structure of amino acid:



- Aminotransferase reaction:
 - ✓ Glutamate + α-ketoacid ↔ α-ketoglutarate + α-amino acid
- Glutamate (via glutamate dehydrogenase) can be converted to: α -ketoglutarate + NH_4^+
- Transport of ammonia:
 - ✓ Glutamate is converted (via glutamine synthase and the use of ATP & NH_4^+) to glutamine.
 - ✓ Notice that glutamine can be converted back to glutamate (via glutaminase) in liver and kidneys.
- Urea cycle (details):
 - ✓ NH_4 is transported into mitochondria and then converted (via carbamoyl phosphate synthase-I and 2 ATPs) to carbamoyl phosphate.
 - ✓ Carbamoyl phosphate is converted (via ornithine transcarbamylase and ornithine) to citrulline.
 - ✓ Citrulline is transported out of the mitochondria to the cytosol where it will be converted (via argininosuccinate synthetase and aspartate) to argininosuccinate.
 - ✓ Argininosuccinate is converted (via argininosuccinate layase) to arginine with formation fumarate.
 - ✓ Arginine is degraded via arginase to produce urea and ornithine (which is recycled).

• Ammonia toxicity:

- ✓ It involves glutamate dehydrogenase and glutamine synthase which decrease α -ketoglutarate and increase the extracellular glutamate.
- \checkmark Depletion of α-ketoglutarate decreases the generation of ATP in the brain.
- ✓ Glutamate is both an excitatory neurotransmitter and a precursor to the inhibitory neurotransmitter GABA.
- ✓ <u>Clinical manifestations:</u>
 - Cerebral edema.
 - ✤ Anorexia and vomiting.
 - Irritability, lethargy and somnolence.
 - Slurred speech and blurred vision.
 - Flapping tremor.
 - Disorientation and coma.
 - ✤ Death.
- ✓ <u>Clinical correlates: conditions in which ammonia level offers valuable</u> information
 - ✤ Hepatic failure.
 - ♦ Reye's syndrome: viral infection in a children + aspirin → results in fulminant hepatitis!
 - ✤ Inherited disorders of urea cycle enzymes except argininosuccinate.
 - Portal-systemic shunt.
- ✓ <u>How to manage ammonia toxicity?</u>
 - ✤ High levels in infants: exchange blood transfusion.
 - ✤ For less critical cases, the treatment of choice is: synthetic disaccharide lactulose (orally or rectally).
 - Principle of treatment with lactulose: NH₃ crosses intestinal wall but NH₄ does not! Fermentation of lactulose to lactate leads to fall in pH, resulting in a shift of the equilibrium further towards NH₄ which cannot cross the intestinal wall. As a result, NH₄ is trapped in gut lumen with net flux of NH₃ from blood to the gut.

- *Limiting the amount of protein in diet.*
- *Promoting waste nitrogen excretion:*
 - Sodium benzoate: conjugates with glycine to form hippuric acid which bypasses urea cycle and gets excreted in urine.
 - Sodium Phenylacetate: conjugates with glutamine to form phenylacetylglutamine which bypasses urea cycle and gets excreted in urine.

