

- Oxidation of 1 g of fat will provide energy equal to 9 kcal.
- Release of fatty acids from TAG:
 - Activation of Hormone Sensitive Lipase (HSL):
 - ✓ Epinephrine → cyclic AMP → phosphrylated HSL (active form).
 - ✓ Insulin → produces dephosphorylated HSL (inactive form).
 - Fate of glycerol:
 - ✓ <u>It goes back to the liver to:</u>
 - Be phosphorylated again to synthesize TAG.
 - Be converted to DHAP by dehydrogenase and enter the process of glycolysis.
 - Fate of fatty acids:
 - ✓ Free (un-esterified) fatty acids bind with albumin and transported to tissues (except erythrocytes and brain) to be oxidized for energy.
- <u>β-oxidation of fatty acids (occurring in the mitochondria and producing NADH,</u> <u>FADH₂ and acetyl CoA):</u>
 - Transport of Long Chain Fatty Acids (LCFA) into the mitochondria:
 - ✓ <u>LCFA translocation:</u>
 - ★ Fatty acyl CoA → via CPT-1 → Acyl carnitine → via CPT-II (and releasing free carnitine) → fatty acyl CoA.
 - ✓ Inhibitor of carnitine shuttle → malonyl CoA
 - ✓ <u>Sources of carnitine:</u>
 - ✤ Meat products.
 - Lysine + Methionine (in liver and kidneys).
 - ✓ <u>Carnitine deficiencies occur because of:</u>
 - Liver diseases.
 - Hemodialysis.
 - ✤ Malnutrition.
 - ✤ Increased requirement for carnitine.
 - CPT-I deficiency:
 - ✓ There is no use of LCFA as source of energy \rightarrow leading to hypoglycemia.
 - ✓ <u>Treatment:</u>
 - ✤ Avoid prolonged fasting.
 - Eat diet high in carbohydrates and low in LCFA.
 - ✤ Take supplements of Medium Chain Fatty Acids (MCFA) and carnitine.

• Entry of Small Chain Fatty Acid (SCFA) and MCFA into the mitochondria:

✓ They are composed of less than 12 carbons thus passing into mitochondria without CPT-I aid.

• Reactions of β-oxidation:

✓ Oxidation (which releases FADH₂) → hydration → oxidation (releasing NADH) → thiolytic cleavage.

• Energy yield from fatty acid oxidation:

✓ Example: palmatic acid (containing 16 carbons):

*	8 acetyl CoA	x 12	= 96 ATP
*	7 NADH	x 3	= 21 ATP
*	7 FADH ₂	x 2	= 14 ATP
			= total of 131 ATP \rightarrow subtract 2 ATP (which are used for fatty acid activation) =
			129 ATP

• MCFA dehydrogenase (MCAD) deficiency:

- ✓ There are four dehydrogenases for short, medium, long and very long fatty acids.
- ✓ MCAD deficiency is an inborn error of metabolism in which medium chain fatty acids are not oxidized. This condition is managed by avoiding prolonged fasting.

• Oxidation of fatty acids with an odd number of carbons:

- Same steps of β-oxidation of even number fatty acids until the last three carbons remaining (this will be known as propionyl CoA):
 - Synthesis of *D*-methylmalonyl CoA:
 - ➢ Propionyl CoA → via carboxylase (and use of biotin) → Dmethylmalonyl CoA.
 - *Formation of L-methylmalonyl CoA:*
 - ➤ L-methylmalonyl CoA → via mutase (and use of vitamin B12) → succinyl CoA.
- Oxidation of unsaturated fatty acids provides less amount of energy.
- β-oxidation in peroxisome:
 - ✓ It occurs with VLCFA (\geq 22 carbons).
 - ✓ <u>Zellweger syndrome</u>: peroxisomal biogenesis disorder.
 - ✓ <u>Adrenoleukodystrophy</u>: VLCFA cannot across peroxisome.