<u>Unit V – Problem 1 – Biochemistry: Liver Function Tests and Jaundice</u>

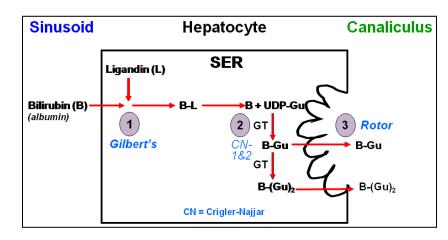
- Mention three functions of the liver.

- Bilirubin conjugation and secretion.
- Serum albumin synthesis (plasma proteins).
- Coagulation factors synthesis (prothrombin, fibrinogen and factor VII).
- What are the markers of liver injury?
 - Abnormality of the above functions.
 - Leakage of liver enzymes:
 - ✓ Aminotranferases.
 - ✓ Alkaline phosphatase.
 - \checkmark ± Gamma glutamyl transpeptidase.
 - They provide an indication to the existence, extent and type of liver damage.
- Liver function tests (LFTs):

ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
ALP	Alkaline phosphatase
GGT	Gamma glutamyl transpeptidase

Synthesis of bilirubin:

- After 120 days, RBCs will be degraded by the reticuloendothelial system (especially macrophages in the spleen).
- Hemoglobin will be released and then degraded into:
 - \checkmark <u>Heme</u>: which will be oxidized to biliverdin.
 - ✓ <u>Globin</u>: recycled.
- Then, biliverdin will be reduced to bilirubin which will be carried in blood bound to albumin.
- Bilirubin-albumin complex will move into the liver to be conjugated via the enzyme glucouronyl transferase to produce bilirubin diglucouronide.
- This conjugated bilirubin will either be:
 - ✓ Excreted in feces as stercobilin (brown in color).
 - ✓ Excreted in urine as urobilin (yellow in color).
- Notes:
 - Accumulation of bilirubin in the plasma and tissues results in jaundice (اليرقان). Jaundice is characterized by yellow discoloration of the skin, sclera and mucous membranes.


✓ Patients with large increases in unconjugated bilirubin are susceptible to biliruin encephalopathy (which is known as kernicterus).

- Jaundice:

- It is seen when the serum total bilirubin is $> 51 \mu mol/L$ (3 mg/dL). Notice that a bilirubin level between 25 and 51 $\mu mol/L$ is considered as hyperbilirubinemia without the appearance of clinical features characterizing jaundice.
- Elevated bilirubin in the absence of other abnormal liver function tests is found in:
 - ✓ <u>Newborn</u> (neonatal jaundice: due to low levels of glucouronyl transferase which results in increased levels of unconjugated bilirubin).
 - ✓ Inherited disorders of metabolism.

- Bilirubin metabolism (inherited hyperbilirubinemia):

- Gilbert syndrome:
 - ✓ Mildly \downarrow UDP-glucouronosyl transferase conjugation activity → \downarrow bilirubin uptake by hepatocytes.
 - ✓ Characterized by asymptomatic or mild jaundice.
 - ✓ Elevated unconjugated bilirubin without overt hemolysis.
 - ✓ Bilirubin \uparrow with fasting and stress.
- Crigler-Najjar syndrome, type-I:
 - ✓ Absent UDP-glucouronosyl transferase.
 - \checkmark Presents early in life and patients die within a few years.
 - ✓ Findings: jaundice, kernicterus (bilirubin deposition in brain) and ↑ unconjugated bilirubin.
 - ✓ Treatment: plasmapheresis and phototherapy.

• Rotor syndrome:

✓ Conjugated hyperbilirubinemia due to defective liver excretion but it does not cause black liver (when compared to Dubin-Johnson syndrome).

- Liver enzymes:

• Alkaline phosphatase (ALP): there are many isoforms (in liver, bones intestine and placenta).

• Gamma glutamyl transferase (GGT):

✓ Parallels (ALP) level in liver disease.

\uparrow (GGT) and normal (ALP)	\uparrow (ALP) and normal (GGT)	
• Alcohol	• Rapid bone growth	
• Drugs	• Bone disease	
	• Pregnancy	

- <u>Albumin:</u>

- It is synthesized mainly by the liver and considered as the primary plasma protein.
- It has a long half-life: 14-20 days.
- When it is decreased, this can be used as a marker for poor nutrition (malnutrition!).

Prothrombin time:

- Factor VII has a short half-life (4-6 hours).
- Prothrombin time is an indirect measure of factor VII level.
- Important diagnosis with liver function tests:
 - \uparrow Total bilirubin and (ALP): cholestasis (biliary obstruction).
 - ↑ Aminotransferases: hepatocellular damage (e.g. hepatitis).
 - \downarrow Albumin: chronic liver disease or malnutrition.

	Hemolytic (prehepatic)	Cholestatic (obstructive)	Hepatocellular (hepatic)
Bilirubin (serum)	介介 (mostly unconjugated)	个个个 (mostly conjugated)	🛧 Later (mixed)
Bilirubin (urine)	(acholuric)	**	1
Urobilinogen (urine)	^	_	7
AST, ALT	_	7	^
ALP	-	↑↑ > 3 x URL	🛧 Later
Other		Clay-colored stools	

URL = upper reference range limit; Hp = haptoglobin; retics = reticulocytes

- Bile salts synthesis:

•

- Cholesterol is the precursor which will be converted via the action of the enzyme cholesterol 7α-hydroxylase to bile acids:
 - ✓ Cholic acid.
 - ✓ <u>Chenodeoxycholic acid.</u>
 - These bile acids will converted to bile salts by the following:
 - ✓ Cholic acid + glycine = glycocholic acid.
 - \checkmark Chenodeoxycholic acid + taurine = taurochenodeoxycholic acid.
- Bile salts perform four physiological functions:
 - Elimination of excess cholesterol.
 - Emusifying agents that render fats accessible to pancreatic lipases.
 - Facilitate intestinal absorption of fat-soluble vitamin.
 - Preventing precipitation of cholesterol in gallbladder.