Unit I – Problem 3 – Biochemistry: Lactic Acidosis

- The normal lactate: pyruvate ratio in the cell is 10:1
- Lactic acid has a pK value of about 4 → it is fully dissociated into lactate and [H⁺] at body pH.
- The end product of glycolysis is pyruvate → which is converted to lactate by pyruvate dehydrogenase.
- Lactic acidosis:
 - Each day the body produces about 1500 mmol of lactate which enters the bloodstream and is metabolized mostly in the liver (only 30% is metabolized in kidneys):
 - ✓ <u>Cori cycle</u>: with the use of muscles of the body \rightarrow energy is needed \rightarrow leading to production of lactate (25%) \rightarrow this lactate will move to the liver \rightarrow where half of it will be converted to glucose by gluconeogenesis while the other half is metabolized to CO_2 and water in the citric acid cycle.
 - ✓ Other sources of lactate:
 - **Skin** (25%).
 - ***** RBCs (20%).
 - **A** Brain (20%).
 - **❖** Intestine (10%).
 - ✓ Other tissues can use lactate as a substrate and oxidize it to CO₂ and water, but it is only the liver and kidneys which have the enzyme that can convert lactate to glucose.
 - **Hyperlactatemia**: it is defined as plasma lactate concentration of 2-5 mmol/L (due to abnormal conversion of pyruvate into lactate).
 - **Lactic acidosis**: it is a disease characterized by a pH < 7.25 and a plasma lactate > 5 mmol/L (due to an increase in blood lactate levels when body buffer systems are overcome).
 - Causes of lactic acidosis:
 - ✓ Excessive tissue lactate production.
 - ✓ Impaired hepatic metabolism of lactate.
 - ✓ It might also occur in association with the following underlying diseases:
 - Diabetes mellitus.
 - ❖ Alcoholic ketoacidosis.
 - Sever iron-deficiency anemia.
 - Liver diseases.
 - * Renal failure.
 - Pancreatitis.
 - ❖ Short gut syndrome.
 - Malignancy.
 - ✓ Inborn errors of metabolism may be responsible for lactic acidosis:
 - **❖** G6PD.
 - ❖ Fructose-1,6-bisphosphate deficiency.
 - Pyruvate carboxylase deficiency.
 - Pyruvate dehydrogenase deficiency.
 - Oxidative phosphorylation deficiency.
 - Methylmalonic aciduria.
 - Plasma lactate = 1 mmol/L. The renal threshold for lactate is about 5-6 mmol/L. Therefore, at normal plasma levels, no lactate is excreted into the urine.
 - There are two types of lactic acidosis:
 - ✓ <u>Type A lactic acidosis (common)</u>: when tissue oxygen delivery is inadequate (hypoxemia or anemia).
 - ✓ Type B lactic acidosis: carbohydrate metabolism is disordered.
 - Management of lactic acidosis: large doses of sodium bicarbonate.

