

- **Enzyme-substrate complex**: the substrate binds to its enzyme on the active site to form the enzyme-substrate complex.

Enzymes:

- Most of them are specific (e.g. acting on few types of molecules to give a molecular product).
- Notice that the enzyme will change its shape as soon as it binds to the substrate (why?) → decreasing the energy of activation which changes the substrate to a transition state. Therefore, the reaction can proceed to form the product and the enzyme will be regenerated.

• Enzyme + Substrate \leftrightarrow enzyme-substrate complex \rightarrow enzyme + product

- <u>Regulation of enzyme reaction velocity:</u>

- Substrate concentration:
 - ✓ Increasing the concentration of the substrate will increase the rate of the reaction (firstorder) hyperbolically until all active sites are saturated.
 - ✓ The reaction reaches its maximal velocity (V_{max}) and further addition of substrate has no effect of the reaction rate (zero-order).
 - ✓ When it is difficult to determine V_{max} and hence the K_m of a reaction from the normal plot, you should plot the reciprocal of substrate against the reciprocal of velocity $(\frac{1}{V} \text{ against } \frac{1}{|v|})$.
 - ✓ This changes the hyperbolic curve into a straight line, which intercepts the x-axis at $(-\frac{1}{K_m})$ and the y-axis at $(\frac{1}{V_{max}})$

- Enzyme inhibition:

- Enzyme inhibitors are molecules which interact with enzymes and prevent it from working. They are classified into:
 - \checkmark <u>Non-specific inhibitors</u>: affect all enzymes in the same way.
 - ✓ <u>Specific inhibitors</u>: exert their effects on a single enzyme. They are further classified into:
 - ✤ *Reversible inhibitors*: which can dissociate from the enzyme and catalytic activity is regained:
 - > Competitive:
 - It is structurally similar to the substrate thus competing with the substrate for binding the active site of the enzyme.
 - At high substrate concentration or low inhibitor concentration → the inhibitor will cause little disruption to normal enzyme function.
 - Increasing [S] will displace the inhibitor and allows the reaction to reach V_{max}.
 - The K_m increases while V_{max} remains unchanged.

Maximal velocity

Non-competitive:

- Do not resemble the enzyme's substrate, thus do not bind the enzyme at the active site but at other sites and inducing the enzyme to undergoe conformational changes.
- Increasing [S] will not displace the inhibitor thus V_{max} will decrease while the K_m will remain unchanged.

- *Irreversible*: when the enzyme is permanently inactivated.
 These inhibitors for a covalently-linked enzyme-inhibitor complex.
- **Regulation of enzyme activity:**

• Covalent modification:

- ✓ Binding a molecule covalently to an enzyme will alter its conformation, and therefore, its activity.
- ✓ This may result in activation or inhibition of enzyme activity, and the response is usually very fast (acute).
- ✓ The most common reversible covalent modification is adding a phosphate group to the (-OH) group of tyrosine, serine or threonine.

