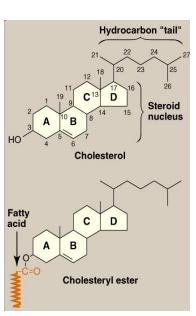
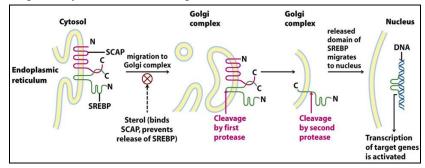

Unit IV – Problem 3 – Biochemistry: Cholesterol Metabolism and Lipoproteins


Cholesterol:

- It is a sterol which is found in all eukaryotic cells and contains an oxygen (as a hydroxyl group –OH) on Carbon number "3".
- Functions:
 - ✓ Structural component of cell membrane modulating its fluidity.
 - ✓ Precursor of several hormones.
 - ✓ Converted to bile acid/salts in the liver and secreted when eating fatty meals (to aid in the digestion and absorption of dietary fat).
- Most of cholesterol is synthesized in our body and not obtained from diet. It is synthesized from acetyl CoA in 5 stages (this process takes place in the cytosol). The following are major sources of liver cholesterol:
 - ✓ Dietary cholesterol which is transported to the liver by chylomicrons.
 - ✓ Cholesterol synthesized in extrahepatic tissues and transported to the liver through HDL.
 - \checkmark De novo synthesis of cholesterol in the liver.

• Synthesis of cholesterol:

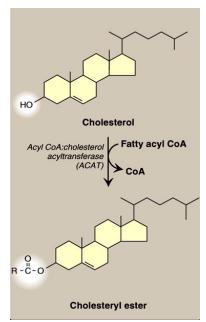
- ✓ <u>Site</u>: cytosol of liver and intestine.
- ✓ Over accumulation of cholesterol will result in deposition of cholesterol-rich lipoproteins in coronary arteries leading to → atherosclerosis.



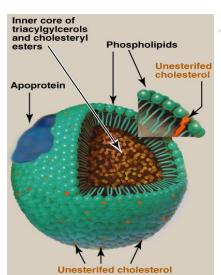
- ✓ <u>Regulation of cholesterol synthesis:</u>
 - ✤ HMG CoA reductase:

- Short-term regulation: HMG CoA reductase is inhibited by phosphrylation (adding phosphate) which is catalyzed by AMP-kinase.
- Long-term regulation: feedback inhibition of HMG CoA reductase by cholesterol itself.
- ✤ Hormonal regulation:
 - ➤ Insulin: it activates HMG CoA reductase thus resulting in ↑ synthesis of cholesterol.
 - ➤ Glucagon: it inhibits HMG CoA reductase thus resulting in ↓ cholesterol synthesis.
- * Transcriptional regulation:
 - The expression of the gene for HMG CoA reductase is controlled by the transcription factor SREBP-2 (Sterol Regulatory Element Binding Protein – 2).

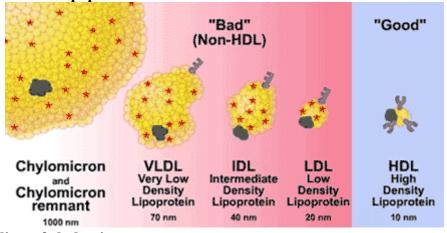
Drugs:

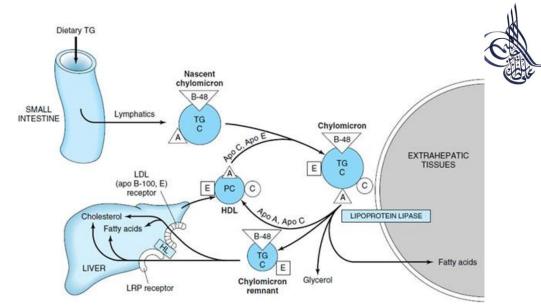

Statins: they are lipid-lowering agents which decrease cholesterol levels by competitive inhibition of HMG CoA reductase. Examples include: atorvastatin (Lipitor) and rosuvastatin (crestor).

• Intracellular cholestryl ester:

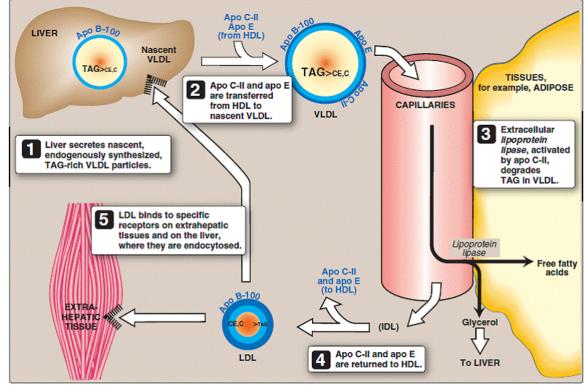

- ✓ Cholesterol which is present in the plasma will be esterified by a fatty acid and converted to
 → cholesteryl ester (which is more hydrophobic than free cholesterol).
- ✓ Notice that free cholesterol and cholesteryl ester are both hydrophobic (don't like water)
 → therefore, they are transported in such environment by being carried in lipoproteins.

• Degradation of cholesterol:

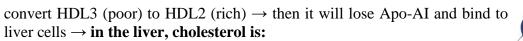

- ✓ <u>Conversion to bile acids/salts</u> → which are lost with feces.
- ✓ Secretion of cholesterol itself with the bile \rightarrow which will be transported to intestine for elimination.


- Lipoproteins:
 - They are cluster of proteins and lipids which transport lipids in the blood.
 - All lipoproteins are composed of:
 - Core of lipids: apolar lipids (triacyglycerols and cholesteryl esters).
 - <u>Surface coat</u>: polar lipids (phospholipids and free cholesterol).
 - ✓ <u>Apolipoproteins:</u>
 - They are lipid-binding proteins which function as:
 - Structural components of lipoprotein particles.
 - Cofactors for enzymes.
 - Ligands for cell surface receptors.

- ✤ Apolipoproteins are divided into 5 classes (Apo-A, Apo-B, Apo-C, Apo-D and Apo-E) with each class being further subdivided into subclasses.
- Classification of lipoproteins:



- Metabolism of chylomicrons:
 - ✓ <u>Function</u>: they transport dietary lipids to the liver and adipose tissues.
 - ✓ They are produced in enterocytes (in rough endoplasmic reticulum).
 - ✓ <u>Assembly of chylomicrons:</u>
 - ✤ Loading of Apo-B48 with lipid (by microsomal transfer protein).
 - Transition from endoplasmic reticulum to Golgi and Packaging into secretory vesicles.
 - Vesicles will fuse with the membrane and release the incomplete chylomicrons in lymphatic vessels first and then into the blood stream.
 - ✤ ApoCII and ApoE will be added to the incomplete chylomicron.
 - ✓ Formation of chylomicron remnants:
 - ✤ Loss of TAG by lipoprotein lipase.
 - ✤ ApoCII return to HDL.
 - Remnant is taken up by the liver (through ApoE receptor) for degradation.



• Metabolism of VLDL:

- \checkmark <u>Function</u>: transports endogenous products to adipose tissues and muscles.
- ✓ <u>VLDL is assembleed in the liver from</u>: triglycerides, cholesterol, cholesteryl ester and apolipoproteins (Apo-B100, Apo-CI and ApoE).
- ✓ Formation of VLDL remnant (LDL):
 - TAG is degraded by lipoprotein lipase.
 - ✤ VLDL decreases in size (IDL).
 - ✤ ApoC and ApoE return back to HDL.
 - ✤ IDL is converted to LDL.

- Metabolism of HDL:
 - ✓ <u>It is the smallest and most dense lipoprotein.</u>
 - ✓ <u>Structure:</u>
 - Discoid in shape containing phophatidylcholine (lecithin).
 - ✤ It contains several lipoproteins (ApoA, ApoC and ApoE).
 - ✤ It changes into sphere when cholesterol is added.
 - ✓ <u>HDL is synthesized in the liver</u> → it picks up cholesterol from cells and esterify them by PCAT/LCAT → accumulation of cholesteryl esters will

- Changed to bile acids/salts.
- ✤ Disposed via bile.
- * Transported to steroidogenic cells for hormone synthesis.

• Lipoprotein (a):

- \checkmark It is another kind of atherogenic lipoprotein which consists of LDL + apo (a)
- ✓ Notice that high level of apo (a) is associated with premature Coronary Artery Disease (CAD) and stoke.
- ✓ Lipoprotein (a) is highly resistant to diet and drug therapy.

TABLE 356-3 Fredrickson Classification of Hyperlipoproteinemias						
Phenotype	1	lla	llb	III	N	V
Lipoprotein, elevated	Chylomicrons	LDL	LDL and VLDL	Chylomicron and VLDL remnants	VLDL	Chylomicrons and VLDL
Triglycerides	$\uparrow\uparrow\uparrow$	Ν	↑	$\uparrow\uparrow$	$\uparrow\uparrow$	$\uparrow\uparrow\uparrow$
Cholesterol (total)	↑	$\uparrow \uparrow \uparrow$	$\uparrow\uparrow$	↑ ↑	N/↑	$\uparrow \uparrow$
LDL-cholesterol	\downarrow	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow$	\downarrow	\downarrow	\downarrow
HDL-cholesterol	$\downarrow\downarrow\downarrow\downarrow$	N/↓	\downarrow	Ν	$\downarrow\downarrow$	$\downarrow\downarrow\downarrow\downarrow$
Plasma appearance	Lactescent	Clear	Clear	Turbid	Turbid	Lactescent
Xanthomas	Eruptive	Tendon, tuberous	None	Palmar, tuberoeruptive	None	Eruptive
Pancreatitis	+++	0	0	0	0	+++
Coronary atherosclerosis	0	+++	+++	+++	+/-	+/-
Peripheral atherosclerosis	0	+	+	++	+/-	+/-
Molecular defects	LPL and ApoC-II	LDL receptor, ApoB-100, PCSK9, LDLRAP, ABCG5 and ABCG8		АроЕ	АроА-V	ApoA-V and GPIHBP1
Genetic nomenclature	FCS	FH, FDB, ADH, ARH, sitosterolemia	FCHL	FDBL	FHTG	FHTG